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Preface

These notes are based on lectures given at University of Nantes in 2018. Standard
references for population dynamics are

• Stochastic models for Structured Populations Bansaye and Méléard [1]

• Markov Processes Ethier and Kurtz [2]

• Tom Britton, Etienne Pardoux, Stochastic epidemics in a homogeneous
community, https://arxiv.org/abs/1808.05350

• Donald Dawson, Introductory Lectures on Stochastic Population Systems,
https://arxiv.org/abs/1705.03781

The basic reference for convergence of Markov processes is the book by Ethier
and Kurtz Ethier and Kurtz [2].
One can find standard courses on continous time markov chains and martingales
everywhere on the net. Here are two such references by Steven Lalley https://
galton.uchicago.edu/~lalley/Courses/313/ContinuousTime.pdfhttps:
//galton.uchicago.edu/~lalley/Courses/385/ContinuousMG1.pdf.
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1
The Galton Watson process

1 Introduction and extinction probability

It is a discrete time Markov chain on the set N. The discrete time parameter n is
the generation number. In this population model, each individual produces, in-
dependently from the other individuals, a random number of descendant follow-
ing the same offspring distribution, the law of an integer valued random variable
ξ.
Given (ξ(k )i , k ≥ 1, i ≥ 1) IID random variables distributed asξ, the Markov chain
is defined by induction : X0 = 1 and

Xn+1 =
Xn
∑

i=1

ξ(n+1)
i (1.1)

We assume that the mean offspring is finite and not null

0<m :=E [ξ]<+∞ . (1.2)

Furthermore, we assume that the process is not deterministic, that is

∀i ∈N, P (ξ= i )< 1 . (1.3)

We also usually assume that P (ξ= 0) +P (ξ= 1) < 1, since otherwise the process
is trivial. 0 is an absorbing state, so qn =P (Xn = 0) is increasing and

q := lim ↑P (Xn = 0) =P (∃n : Xn = 0) is the extinction probability. (1.4)

Let fn (s ) =E
�

s Xn
�

be the generating function of Xn . We let f (s ) = f1(s ) =E
�

sξ
�

.

Lemma 1.1. fn+1(s ) = fn ( f (s )) and therefore fn (s ) = f ◦ f ◦ · · · ◦ f is the n-th com-
position of f .

1
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Proof. We have,ξ(n+1)
i independent fromFn :=σ(ξ(k )j , k ≤ n , j ≥ 1)⊃σ(X0, X1, . . . , Xn ) =:

F X
n . Therefore

E
�

s Xn+1 | Xn = k
�

=E
h

sξ
(n+1)
1 +...,ξ(n+1)

k

i

= f (s )k . (1.5)

Hence
fn+1(s ) =E

�

E
�

s Xn+1 | Xn

��

=E
�

f (s )Xn
�

= fn ( f (s )) . (1.6)

Lemma 1.2. The extinction probability satisfies q ∈ [0, 1] and

q = f (q ) . (1.7)

Proof. Consequently qn =P (Xn = 0) = fn (0) satisfies

qn+1 = f (qn ) (1.8)

and taking limits yields the desired result.

The study of the equation f (s ) = s for the function f non negative, increasing
convex on [0, 1], with f (1) = 1, yields immediately the following dichotomy

Proposition 1.3. If m ≤ 1, then q = 1 : there is almost sure extinction.
If m > 1, then q < 1 : there is a positive probability of non extinction.

We say that the process is subcritical if m < 1, critical if m = 1 and supercritical if
m > 1.

The Galton–Watson process is a branching stochastic process arising from Fran-
cis Galton’s statistical investigation of the extinction of family names. The pro-
cess models family names as patrilineal (passed from father to son), while off-
spring are randomly either male or female, and names become extinct if the fam-
ily name line dies out (holders of the family name die without male descendants)

Assume that ξ∼B (d , p )with p = 1/2. Then f (s ) =
�

s+1
2

�d
and thus

• if d = 3, 1−q = 0.77 is the probability of survival of the name

• if d = 5, 1−q = 0.96.

Observe that if initially, X0 = 20 then q → q 20 and 1−q 20 ' 1 for both d = 3 and
d = 5.
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2 The fundamental martingale and the actual growth of
the population

The process Wn =
Xn
m n is a positive martingale. Indeed, since ξ(n+1)

i are indepen-
dent fromFn

E [Xn+1 | Fn ] =E [Xn+1 | Xn ]E
�

ξ(n+1)
1 + · · ·+ξ(n+1)

k

�

|k=Xn
=m Xn . (1.9) {eq:13}{eq:13}

Therefore, there exists a positive integrable finite rv W such that

Wn →W a .s . (1.10) {eq:14}{eq:14}

Hence, if m < 1, Xn =m n Wn converges as to 0 exponentially fast.
Trivially, q =P (∃n0,∀n ≥ 0, Xn = 0)≤P (W = 0) but we can say more.

Lemma 1.4.
P (W = 0) ∈

�

q , 1
	

.

Proof. We only need to prove that s := P (W = 0) satisfies f (s ) = s . The i -th de-
scendent from the firts generation has a martingale limit W (i ). More precisely, if

X (i )n is the number of descendent in generation n of this i -th person, then the pro-
cess X (i ) are independent, distributed as X , independent from X1 and for n ≥ 2

Xn =
X1
∑

i=1

X (i )n−1 (1.11) {eq:15}{eq:15}

This stochasic equation is usually called the basic branching equation and is bet-
ter understood by introducing the Uhlam-Harris tree representation of a Galton
Watson process (see for example Champagnat [3]).
Taking limits, we obtain that

W = lim
n→+∞

m−n Xn =
1

m
(W (1)+ · · ·+W (X1)) . (1.12) {eq:16}{eq:16}

Therefore

s =P (W = 0) =P
�

∀i ∈ {1, . . . , X1}, W (i ) = 0
�

=
∑

k

P
�

∀i ∈ {1, . . . , X1}, W (i ) = 0 | X1 = k
�

P (X1 = k )

=
∑

k

P
�

W (i ) = 0,∀i ∈ {1, . . . , k}
�

P (X1 = k )

=
∑

k

s kP (X1 = k ) = f (s ) .



CHAPTER 1. THE GALTON WATSON PROCESS 4

In the supercritical case, with mild integrability assumptions, either the process
goes extinct, either the population grows a.s. at rate m n .

Theorem 1.5 (Kesten-Stigum). Assume m > 1. If E
�

ξ log+ξ
�

< +∞ then (Wn )n
is UI, E [W ] = 1, P (W = 0) = q and {W > 0} = {∀n , Xn > 0} a.s. that is on the non
extinction set the population grows exponentially fast.
If E

�

ξ log+ξ
�

=+∞, then Wn is not UI and W = 0 a.s.

Sketch. One can prove easily, exercise, that if E
�

ξ2
�

< +∞ the Wn is UI. If Wn is
UI, then by the optional stopping theorem at time t = +∞, E [W ] = E [W0] = 1.
Therefore one cannot have P (W = 0) = 1. Hence P (W = 0) = q .
Since {∃n : Xn = 0} ⊂ {W = 0} and these two sets have same probability, then
these sets are equal a.s.

In the subcritical case, we can determine the expected total size. In practice if
the process models an infection with at time 0 exactly one infected person, then
the total number of infected person is

X̄ =
+∞
∑

n=0

Xn

Lemma 1.6. If m < 1 then E
�

X̄
�

= 1
1−m .

In the subcritical case, the asymptotics Xn ∼m n W suggests that the first hitting
time of 0 has an exponential tail.

Lemma 1.7. If m < 1 and E
�

ξ log+ξ
�

<+∞, then there exists K > 0 such that

P (T0 > n ) =P (Xn > 0) = K m n (1+o (1)) (n→+∞).

We may be interested to study the mean time to extinction with an initial popu-
lation of size N , with N large : it is of order ln(N ).

Lemma 1.8. If m < 1 and E
�

ξ log+ξ
�

<+∞, then

E [T0 | X0 =N ]∼
ln N

|ln m |
. (1.13) {eq:17}{eq:17}

Proof. https://www.math.uni-frankfurt.de/~ismi/vatutin/Lecture4.
pdf

https://www.math.uni-frankfurt.de/~ismi/vatutin/Lecture4.pdf
https://www.math.uni-frankfurt.de/~ismi/vatutin/Lecture4.pdf


2
Birth and death processes

1 Definition and non explosion criteria

Definition 2.1. A brth and death process is a pure jump Markov process, with val-
ues in N, with jumps steps ±1 and transition rates

i → i +1 with rate λi

i → i −1 with rate µi ,

with λi ≥ 0, µi ≥ 0, λ0 =µ0 = 0.

The Q matrix, or infinitesimal generator, is given by

Qi ,i+1 =λi , Qi ,i−1 =µi , Qi ,i =−(λi +µi ) =:−qi , Qi , j = 0 otherwise . (2.1)

When in state i the chain waits an E (qi ) time, then jumps to i +1 with probability
λi
qi

, and to i −1 with probability µi
qi

Three important examples

1. The linear birth death process. It is a branching process with λi = λi and
µi =µi ( λ,µ> 0 given).

2. The logistic birth death process: λi =λi , µi =µi + c i (i −1) (c > 0).

3. The birth death process with immigration : λi = λi +ρ, µi = µi (ρ > 0
given).

Le (Zn )n≥0 be the embedded Markov chain. It has transition matrix

pi ,i+1 = 1−pi ,i−1 =
λi

qi
. (2.2) {eq:1}{eq:1}

Recall that

5
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Proposition 2.1. There is non explosion iff

∑

n≥0

1

qZn

=+∞ a .s . (2.3) {eq:2}{eq:2}

Corollary 2.2. Sufficient contions for non explosion are that

• either supi qi <+∞

• either (Zn )n∈N is recurrent.

Proposition 2.3. The linear birth death process does not explode.

Proof. Here we have for i ≥ 1, pi ,i+1 = 1−pi ,i−1 =
λ
λ+µ , and p0,0 = 1. So Zn = Sn∧T0

is a random walk Sn = X1 + · · ·+ Xn with mean step E [X1] =
λ−µ
λ+µ . If λ > µ, then

Sn/n→E [X1]> 0 , so Sn →+∞ and either T0 <+∞ and
∑

n≥0
1

qZn
=+∞, or

qZn
=

1

(λ+µ)Sn
∼

C

n

and again
∑

n≥0
1

qZn
=+∞.

If λ ≤ µ then To < +∞ a.s, the chain is absorbed at 0, since lim infSn = −∞
a.s.

Theorem 2.4. Let (X t )t≥0 be an integer valeud pure jump markov process with
generator Q . Then X does not explodes a.s. iff the only non negative bounded
solution of Qφ(x ) =φ(x ) for x ≥ 1 isφ ≡ 0.

Proof. We begin by showing that if T0 = 0< T1 < · · ·< Tn < . . . are the jump times,
with limit T∞ := lim Tn , then the function

φ(x ) :=Ex

�

e −T∞
�

(2.4) {eq:3}{eq:3}

is non negative bounded and satisfiesQφ =φ. Indeed,φ(0) = 0 and conditioning
by T1, thanks to the strong Markov property, if x ≥ 1,

Ex

�

e −T∞ | FT1

�

=Ex

�

e −T1 e −(T∞−T1) | FT1

�

= e −T1EXT1

�

e −T∞
�

= e −T1φ(Z1) .

Since T1 and Z1 = XT1
are independent,

φ(x ) =Ex

�

e −T1
�

Ex

�

φ(Z1)
�

=
qx

1+qx

∑

y 6=x

qx y

qx
φ(y )

=
1

1+qx

∑

y 6=x

qx yφ(y ) .
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Thus,
Qφ(x ) =

∑

y

qx yφ(y ) =−qxφ(x ) +
∑

y 6=x

qx yφ(y ) =φ(x ) . (2.5) {eq:5}{eq:5}

Assume that the only non negative bounded solution of Qφ(x ) = φ(x ) for x ≥ 1
isφ ≡ 0, thenφ(x ) =Ex

�

e −T∞
�

= 0 so that T∞ =+∞, Px a.s.
Reciprocaly if the process does not explodes a.s. there exists x such that φ(x ) >
0.

Proposition 2.5. Assume that λi > 0 for i ≥ 1. Then, the birth death process does
not explode a.s. iff

∑

i≥1

�

1

λi
+

µi

λiλi−1
+ · · ·+

µi · · ·µ2

λi · · ·λ1

�

=+∞ (2.6) {eq:8}{eq:8}

Corollary 2.6. If there exists λ̄ such that λi ≤ λ̄i , then the birth death process does
not explode a.s.

2 Extinction probabilities

Proposition 2.7. The extinction probabilities (ui :=Pi (T0 <+∞), i ≥ 1) satisfy the
equation Q u (i ) = 0 that is

λi ui+1− (λi +µi )ui +µi ui−1 = 0 . (2.7) {eq:9}{eq:9}

Proof. We condition by the value of the first jump XT1
= Z1. By the strong Markov

property
Pi

�

T0 <+∞|FT1

�

=EXT1
[T0 <+∞] . (2.8) {eq:4}{eq:4}

Therefore, taking expectations

ui =Ei [u (Z1)] =
λi

λi +µi
ui+1+

µi

λi +µi
ui−1 . (2.9) {eq:10}{eq:10}

This is exactly the desired equation.

Proposition 2.8. Given N ≥ 2, let u (N )i = Pi (T0 < TN ), for 0≤ i ≤ n. Then u (N )0 = 1,

u (N )N = 0 and

u (N )i =
WN−1−Wi−1

WN−1
, with Wn = 1+

n
∑

k=1

µ1 · · ·µk

λ1 · · ·λk
. (2.10) {eq:11}{eq:11}

In particular

u (N )1 = 1−
1

WN−1
. (2.11) {eq:12}{eq:12}
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Proof. On can do the same proof as in the preceding proposition, or else apply

the preceding proposition with ratesλ(N )i =µ(N )i = 0 for i ≥N , and get that x (N )i :=
u (N )i+1−u (N )i satisfy λi x (N )i =µi x (N )i−1, for 1≤ i ≤N −1. With g i =

µi
λi

and ri = g1 · · ·g i

we get x (N )i = ri x (N )0 ,

u (N )i = 1+ x (N )0 + · · · x (N )i−1 = 1+ x (N )0 wi−1 .

The boundary condition 0= u (N )N implies the value of x (N )0 and the formulas.

By letting N →+∞, we have, when there is no explosion,u (N )i → ui

Theorem 2.9. Let

α := 1+
+∞
∑

k=1

µ1 · · ·µk

λ1 · · ·λk
.

If α=+∞ then the extinction probabilities are all equal to 1. Otherwise, they are

ui =
1

α

+∞
∑

k=i

µ1 · · ·µk

λ1 · · ·λk
.

Example : the linear birth death process. g i =
µ
λ , ri =

�µ
λ

�i
. There is a.s. extinction

if µλ . And if λ>µ, the probability of extinction is

ui =
�µ

λ

�i
< 1 .

Example : the logistic birth death process g i =
µ+c (i−1)

λ ,

ri =
i
∏

k=1

µ+ c (k −1)
λ

≥C k i ,

so
∑

i ri =+∞ and there is extinction a.s. In the mean the population stabilizes
but the competition, stochastic, makes extinction inevitable.
Indeed if f (x ) = x and x (t ) =E1 [X t ] then L f (x ) = (λ−µ+ c )x − c x 2. Therefore,
by Kolmogorov forward equation, and Cauchy Schwarz inequality

x ′(t ) =
d

d t
Pt f (x ) = Pt L f (x ) = (λ−µ+c )x (t )−cE1

�

X 2
t

�

≤ (λ−µ+c )x (t )−c x (t )2

(2.12)
We write it

x ′(t ) =−C x (t )(x (t )− x∞) , with x∞ =
c +λ−µ

c
. (2.13)

Therefore if x∞ < 0, then x is decreasing and if x∞ ≥ 1, then by comparison x
stays below x∞.



3
Linear Birth and Death process

1 The branching property

We say that the markov process X = (X (t ), t ≥ 0;Ft , t ≥ 0;Px , x ∈ E ) has the
branching property if whenever X1, X2 are two independent copies of X starting
from x1, x2 respectively, the process X1(t ) + X2(t ) has the law of X starting from
x1+ x2. Formally, this may be written as

Px1
∗Px2

=Px1+x2
. (3.1) {eq:defbran}{eq:defbran}

To establish 3.1 it suffices to prove equality of finite dimensional distributions.
We let Px1,x2

= Px1
⊗Px2

be the distribution of the couple of independent copies
and Ex1,x2

[.] be the corresponding expectation. We need to prove that for any
t1 < t2 < . . .< tn , we have

Ex1,x2

�

∏

i=1

fi (X1(ti ) +X2(ti ))

�

=Ex1+x2

�

∏

i

fi (X (ti ))

�

. (3.2)

It is easy to prove, by a monotone class theorem, that the process (X1, X2) is Marko-
vian with respect to the filtration Gt :=σ(X1(s ), X2(s ), s ≤ t )with semi group

E
�

f (X1(t + s ), X2(t + s )) | Gs

�

=EX1(s ),X2(s )
�

f (X1(t ), X2(t ))
�

. (3.3)

Therefore, by an easy induction, X is a branching process iff

Ex1,x2

�

f (X1(t ) +X2(t ))
�

=Ex

�

f (X (t ))
�

(∀x1, x2, t ) . (3.4)

Let us consider from now on, processes with values in R+ or N. Then, since the
Laplace tranform of positive rv’s characterize their distributions, we let for θ ≥ 0,
fθ (x ) := e −θ x . By independence

Ex1,x2

�

fθ (X1(t ) +X2(t ))
�

=Ex1

�

e −θX (t )�Ex2

�

e −θX (t )�. (3.5)

9
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Hence, X has the branching property, iff for any θ ≥ 0, t ≥ 0 the function h (x ) =
Ex

�

e −θX (t )
�

satisfies h (x1+ x2) = h (x1)h (x2). This happens iff there exists u (θ , t )
such that

Pt fθ (x ) =Ex

�

e −θX (t )�= e −x u (θ ,t ) . (3.6)

Let us specialize now to bd processes.

Proposition 3.1. A birth and death process is a branching process iff it is a linear
birth and death process.

Proof. Recall that the generator is

L f (x ) =λ(x )( f (x +1)− f (x ))+µ(x )( f (x −1)− f (x )) ,

and therefore the generator is

L fθ (x ) = lim
t ↓0

1

t
(Pt fθ (x )− fθ (x )) =−x∂t u (θ , t )|t=0e −x u (θ ,0) =−x∂t u (θ , t )|t=0 fθ (x ) .

(3.7)
On the other hand we have

L fθ (x ) = fθ (x )
�

λ(x )(e −θ −1) +µ(x )(e θ −1)
�

. (3.8)

The only way for these two expressions to be equal for all x ,θ is that λ(x ) = λx
and µ(x ) =µx .

2 Distribution at a fixed time

With a little bit extra work we can obtain the distribution of X (t ) at a fixed time,
and deduc from it the extinction probability at a fixed time.

Proposition 3.2. For a linear birth and death process starting from x0 = 1, we
have if λ 6=µ,

E
�

e −θX t
�

=
µ(e −θ −1)e (λ−µ)t − (λe −θ −µ)
λ(e −θ −1)e (λ−µ)t − (λe −θ −µ)

, (3.9)

and if λ=µ,

E
�

e −θX t
�

=
(λt −1)(e −θ −1)−1

λt (e −θ −1)−1
. (3.10)

Of course, the branching property implies that

Ex

�

e −θX t
�

=
�

E1

�

e −θX t
��x

. (3.11)
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Proof. We know from the branching property that Pt fθ (x ) = e −x u (θ ,t ). Therefore,

E
�

X t e −θX t
�

=−∂θPt fθ (x ) , (3.12)

and

∂t Pt fθ (x ) = LPt fθ (x ) = (e
−θ −1)λE

�

X t e −θX t
�

+ (e θ −1)µE
�

X t e −θX t
�

(3.13)

=−(λ(e −θ −1) +µ(e θ −1))∂θPt fθ (x ) (3.14)

Therefore
∂t u (θ , t ) + (λ(e −θ −1) +µ(e θ −1))∂θu (θ , t ) = 0 . (3.15)

We shall use the method of characteristics to solve this PDE. Let (x1(s ), x2(s )) be
a solution of

d x2

d s
= 1 ,

d x1

d s
=λ(e −x1 −1) +µ(e x1 −1) . (3.16)

Then,
d

d s
u (x1(s ), x2(s )) = 0 (3.17)

and u (t he t a , t ) = x1(0) if we have the boundary conditions x2(0) = 0, x2(t ) = t ,
x1(t ) = θ .
For λ 6=µ, we solve the ode for x1

s + c =

∫

d x1

λ(e −x1 −1) +µ(e x1 −1)
(3.18)

=

∫

−d y

λ(e y −1) +µ(e −y −1)
(y =−x1) (3.19)

=−
1

λ−µ
ln
�

e y −1

λe y −µ

�

(3.20)

That is
e (λ−µ)s (e −x1(s )−1)
λe −x1(s )−1

= c o n s t a n t . (3.21)

Injecting the boundary conditions x1(t ) = θ , x1(0) = u (θ , t ) yields the desired
formula.

Letting θ →+∞ in the preceding yileds the extinction probabilities

Corollary 3.3. For a linear birth and death process starting from x0 = 1, we have
if λ 6=µ,

P (X t = 0) =
µ(1− e −(λ−µ)t )
λ−µe −(λ−µ)t

, (3.22)

and if λ=µ

P (X t = 0) =
λt

1+λt
(3.23)

We can check that the (final) extinction probability is

q = lim
t→+∞

P (X t = 0) = 1∧
µ

λ
(3.24)
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3 The fundamental martingale

This linear BD process is the continuous analogue of the GW process. On non
extinction, it grows exponentially fast.

Proposition 3.4. Assume λ>µ. The process Wt = e −(λ−µ)t X t is a positive martin-
gale, Uniformly Integrable, converging a.s to a positive integrable random variable
W∞ and almost surely

{W∞ > 0}= {∀t , X t > 0} (3.25)

Proof. Applying Kolmogorov forward equation to f (x ) = x yields

∂t Pt f (x ) = Pt L f (x ) = (λ−µ) f (x )

and therefore Pt f (x ) = e (λ−µ)t f (x ). Hence, if s l e t ,

E [Wt | Fs ] = e −(λ−µ)t Pt−s f (X s ) =Ws . (3.26)

We have obviously
{W∞ > 0} ⊂ {∀t , X t > 0} (3.27)

and all we have to prove is that thes two sets have the same probability.
Similarly we can compute exactlyE

�

X 2
t

�

and deduce that the martingale Wt is UI
and thus E [W∞] =E [W0] = 1.
On the other hand, conditionning by the first jump time, the strong Markov prop-
erty yields that s =P (W∞ = 0) satisfies

s =
λ

λ+µ
s 2+

µ

λ+µ
(3.28)

Therefore s ∈
�

1, µλ
	

. and E [W∞] = 1 imposes s 6= 1 therefore s =µ/λ.

4 Hitting times

Intuitively, the preceding results show that in the supercirtical case, it takes app-
proximatively l o g K unit of times to go from a population of 1 individual to a
population of K individual. And in the subcritical case, it takes also l o g K unit
of time to go extinct starting from a polulation of order K .
Let Ta = inf{t ≥ 0 : X t = a } for a ∈N. Let (tK )K ≥1 be a sequence of positive times
such that tk >> log K .
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{pro:hitlinbd}
Proposition 3.5. 1. Assume λ<µ, subcritical case. Then for any ε> 0

P1

�

T0 ≤ tK ∧TdεK e
�

→ 1 (3.29) {eq:66}{eq:66}

and
PbεK c(T0 ≤ tK )→ 1. (3.30) {eq:67}{eq:67}

Moreover

Pn (Tk n ≤ T0)≤
1

k
. (∀n ≥ 1, k ≥ 1). (3.31) {eq:68}{eq:68}

2. Assume λ>µ (supercritical case). Then

P1

�

T0 ≤ tK ∧TdεK e
�

→
µ

λ
. (3.32) {eq:69}{eq:69}

and
P1

�

TdεK e ≤ tK

�

→ 1−
µ

λ
(3.33) {eq:70}{eq:70}

Proof. Since Ta ≥ a −1, and tK →+∞, we have

P
�

T0 ≤ tK ∧TdεK e
�

→P (T0 <+∞)

and this yields (3.29) and (3.32)
The limit (3.30) follows from the exact computation of the extinction probability
at time tk

PbεK c(T0 ≤ tK ) =P
�

X tK
= 0

�dεK e
(3.34)

The inequality (3.31) follows from Doob’s stopping theorem applied to the UI
martingale Wt and time S = T0 ∧Tk n

En [WS ] =En

�

WTk n
1(Tk n<T0)

�

=En [W0] = n (3.35)

and sinc λ<µ, WTk n
≥ k n .

Eventually, (3.33) comes from the fact that on the extinction set, {W∞ = 0} of
probability µ/λ, we have a finite progeny, to as TdεK e = +∞ for K large enough.
On the survival set, {W∞ > 0} = {T0 =+∞} we have X t ∼ W∞e (λ−µ)t and since
tK >> l o g K , we have both T0 =+∞ and TdεK e ≤ tK .



4
Comparison of Markov Jump Processes

1 Motivation

Assume that X 1, X 2 are linear birth death processes with birth ratesλi and death
rates µi that satisfy

λ1 ≤λ2 , µ1 ≤µ2 .

Our intuition tells us that if X 1(0)≤ X 2(0), then X 1 has more chances to be extinct
at time t than X 2, that is

if x1 ≤ x2 then Px1

�

X 1
t = 0

�

≥Px2

�

X 2
t = 0

�

.

A first idea is to use exact computations that give

Pxi

�

X i
t = 0

�

=

�

µi (1− e −(λi−µi )t )
λi −µi e −(λi−µi )t

�xi

(4.1)

But even for x1 = x2, fixed t , checking that this function is decreasing in λ is not
an easy task.

2 Stochastic Monotonicity

The state space (E ,E ) is endowed with a measurable partial ordering≺ such that

F := {(x1, x2) : x1 ≺ x2} ∈ E 2 (4.2)

A measurable function f : E → R is monotone if x1 ≺ x2 =⇒ f (x1) ≤ f (x2). A
measurable set A is monotone if 1A is monotone that is x ∈ A and x ≺ y implies
y ∈ A. We letM be the set of monotone functions (and the set of monotone sets).
For two probability measures on E we say that µ1 ≺ µ2 if for every non negative
f ∈M , µ1( f ) ≤ µ2( f ). For two random variables on (E ,E ) we say that X ≺ Y if
PX ≺ PY .

14
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If F is closed and E polish theorem, then Strassen’s theorem (see Lindvall [4])
states that it twho probabilities µ1,µ2 on (E ,E ) satify µ1 ≺ µ2 then there exists a
probability measure P on (E 2,E ⊗ E ) with marginals µ1,µ2 such that P (F ) = 1.
In other words there exist random variables Y1, Y2 on (E ,E ) such that Y1 ≺ Y2 a.s.
and Yi ∼µi .
Given two semigroups on bE , we say that P1(t )≺ P2(t ) if

x1 ≺ x2 =⇒ P1(t ) f (x1)≤ P2(t ) f (x2)(t ≥ 0, f ∈ bM ). (4.3)

Lemma 4.1. Let µ1,µ2 be two finite measures on (E ,E ). The following are equiv-
alent

1. µ1(A)≤µ2(A) forall A ∈M

2. µ1( f )≤µ2( f ) forall f ∈ bM+.

3. µ1( f )≤µ2( f ) forall f ∈M+.

If furthermore µ1(E ) = µ2(E ) then each of the above statement is also equivalent
to

µ1( f )≤µ2( f ) (4.4)

for all f ∈M such that the integrals exist.

We would like to compare generators and say that L1 ≺ L2 implies P1(t ) ≺ P2(t )
forall t .
We say that the operators L1, L2 defined on bE satisfy L1 ≺ L2 if x1 ≺ x2 and A
monotone, and either both x1, x2 ∈ A or both x1, x2 ∈ AC imply L1 f (x1)≤ L2 f (x2).

Lemma 4.2. If forall t P1(t )≺ P2(t ) then the corresponding generators satisfy L1 ≺
L2.

Proof. Assum A ∈M , x1 ≺ x2. If x1 ∈ A, x2 ∈ A then

L i 1A(xi ) = lim
t ↓0

1

t
(Pi (t )1A(xi )−1A(xi )) = lim

t ↓0

1

t
(Pi (t )1A(xi )−1)

and since P1(t )1A(x1) ≤ P2(t )1A(x2) we obtain L1A(x1) ≤ L1A(x2). If x1 6 i n A and
x2 6 i n A the proof is similar.

We are going to prove that for processes with bounded rates, the condition L1 ≺
L2 is also sufficient.
We have the following extension of Strassen’s theorem.

Theorem 4.3. Let X1, X2 be two Markov processes on the polish space (E ,E ) with
cadlag paths whose semigroups satisfy forall t P1(t ) ≺ P2(t ) and let µ,ν be two
probabilities on E such that µ ≺ ν. Then there exists a coupling that is two pro-
cesses defined on the same probability space (X̂1(t ), X̂2(t ), t ≥ 0) such that X̂1(0) ∼
µ, X̂2(0)∼ ν, X̂1, X̂2 have respective semigroups P1, P2 and

a .s . ∀t ≥ 0 X1(t )≤ X2(t ). (4.5)



CHAPTER 4. COMPARISON OF MARKOV JUMP PROCESSES 16

Proof. This can be found in Kamae et al. [5, Theorem 5]. We say then that X1(t )≺
X2(t ) if we consider such a coupling.

3 Markov jump processes

Kernels and semigroups

Definition 4.1. Let (S ,S ) and (T ,T ) be two measurable spaces. A function

κ : S ×T → [0,+∞] (4.6)

is called a (transition ) kernel if

1. for any fixed B ∈T , the function s → κs (B )κ(s , B ) is measurable.

2. for any fixed, s ∈ S, the function B → κ(s , B ) is a measure on (T ,T ).

The kernel is said to be finite if all the measure κs are finite. It s a Markov kernel,
or a probability kernel, if all the κs are probabilities.
To every finite kernel κwe associate the operator Aκ : bT → bS by:

Aκ f (s ) =

∫

T

f (t )κs (d t ) = κs ( f ) . (4.7)

If an operator A : bT → bS is positive in the sense that f ≥ 0 implies A f ≥ 0,
then κ(s , B ) := A1B (s ) defines a finite kernel s.t. A = Aκ.
Let (X (t ), t ≥ 0)be a stochastic process defined on a probability space with values
in (E ,E ), that is (t ,ω)→ X (t ,ω) is aB ([0,+∞[)⊗F → Rmeasurable function
and letF X

t :=σ(X (s ), s ≤ t ). Then X is a Markov process if

P
�

X (t + s ) ∈ A | F X
t

�

=P (X (t + s ) ∈ A | X (t )) , (4.8)

for all s , t ≥ 0 and A ∈ E .
If (Gt )t is a filtration such thatF X

t ⊂Gt we say that X is a (Gt )Markov process if

P (X (t + s ) ∈ A | Gt ) =P (X (t + s ) ∈ A | X (t )) , (4.9)

for all s , t ≥ 0 and A ∈ E .

Proposition 4.4. Assume that (Px , x ∈ E ) is a family of probability measure on
(Ω,F ) such that

1. X is a Markov process under each Px such that

Px (X (t + s ) ∈ A | Gt ) =PX (t )(X (s ) ∈ A) (4.10)

for all s , t ≥ 0, x ∈ E and A ∈ E .
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2.
Px (X (0) = x ) = 1 (∀x ) (4.11)

3. The operator Pt f (x ) =Ex

�

f (X (t ))
�

is a Markov kernel on E .

Then (Pt , t ≥ 0) is a Markov semigroup : P0 = i d and Pt Ps = Pt+s .

Proof. If f ∈ bE , then P0 f (x ) =E
�

f (X (0))
�

= f (x ) so P0 = i d and

Pt+s f (x ) =Ex

�

f (X (t + s ))
�

=Ex

�

Ex

�

f (X (t + s )) | Gt

��

=Ex

�

Ps f (X t )
�

= Pt Ps f (x ) .
(4.12)

To this semi-group we can associated transition kernels Pt (x , d y )which are called
transition functions associated to the markov process X , and the semi group
equation is then called Chapman-Kolmogorov equations.

Pt+s (x , A) =

∫

Pt (x , d y )Ps (y , A) . (4.13)

It is worth observing that given such a Markovian semi-group, on a polish space
(E ,E ), then there exists a Markov process satisfying the assumptions of the propo-
sition. It’s distribution is uniquely determined (see e.g. [2, Theorem 1.1]). There-
fore we shall identify Markov semi-groups with such Markov processes.

Definition and first properties

A pure jump Markov process defined on (E ,E ) is a Markov process whose semi-
group satisfies

lim
t→0

Pt 1A(x ) = 1A(x ) (∀x ∈ E ,∀A ∈ E ). (4.14)

This is called the continuity assumption since it means that as t → 0, Pt 1A(x )→
P01A(x ) = 1A(x ).
This is also called the jump assumption since this implies that the Markov process
stays constant until the first jump.
For example a Brownian motion is not a pure jump process : it satisfies, for con-
tinuous bound f , Pt f (x )→ f (x ) but if t > 0, since pt (x , d y ) =φt (y − x )d y , the
gaussian density, for f = 1{x } we have Pt f (x ) = 0 and therefore Pt f (x ) → 0 6=
f (x ) = 1.

Lemma 4.5. Let X be a pure jump process and let T := inf{t > 0X t 6= X0}. Then,
under Px there exists α(x ) ∈ [0,+∞] such that Px (T > t ) = e −tα(x ).

Proof. By Markov property since {T > t } ∈ Ft and 1(T>t+s ) = 1(T>t )1(T>s◦θt ) =
1(T>t )1(T̃>s ) with X̃ (s ) = X (t + s ) and T̃ = T (X̃ )

Px (T > t + s | Ft ) = 1(T>t )EX t

�

1(T>s )
�

= 1(T>t )Px (T > s ) (4.15)
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If α(x ) = 0 (resp. +∞, ∈ (0,+∞)) we say that the state x is absorbing, instanta-
neous, stable.

Theorem 4.6. (Chen [6, Theorem 1.4]) Let X be a Markov pure jump process with
semigroup (Pt )t≥0. Then there exists a measurable function q : E → [0,+∞] such
that

∀x , lim
t→0

1

t
(1−Pt 1{x }(x )) = q (x ) . (4.16)

We have q (x ) = α(x ), but this is not so simple to prove. The following applies in
particular to processes with bounded rates,

Theorem 4.7. (Chen [6, Theorem 1.11]) Let Let X be a markov pure jump process
with semigroup (Pt )t≥0 on E Polish, such that the set

�

x : q (x ) = +∞
	

(4.17)

is at most countable. Then there exists a finite kernel q on E such that q (x ,{x }) = 0
and for any f ∈ bE

lim
t→0

1

t
Pt f (x )− x =

∫

( f (y )− f (x ))q (x , d y ) =: L f (x ) . (4.18)

L is the infinitesimal generator, and q (x , E ) = q (x ) so we have, for x outside a
countable set,

L f (x ) =

∫

f (y )q (x , d y )−q (x ) f (x ) (4.19)

We shall assume from now on, except if otherwise stated, that forall x , q (x ) <
+∞. The states for which q (x ) = 0 are called absorbing. We have of course the
Kolmogorov equations:

d

d t
Pt f = Pt L f = LPt f . (4.20)

This of course applies to process on discrete state spaces whose Q matrix satisfy
qi :=

∑

j 6=i qi j <+∞.

4 Bounded rate processes

We consider a jump process on (E ,E )with generator

L f (x ) =

∫

( f (y )− f (x ))q (x , d y ) (4.21)

with q a finite transition kernel that is a function q : E ×E →R+ such that

1. for each x ∈ E , q (x , .) is a finite measure
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2. for each A ∈ E , x → q (x , A) is measurable. The total jump rate at state x is
q (x ) := q (x , E ).

Without loss in generality we shall assume that q (x ,{x }) = 0. We say that the jup
process has bounded rates if supx∈E q (x )<+∞.

Proposition 4.8. Consider a Jump Markov process with bounded rates as above
and let b ≥ supx q (x ). Then

Pb = I +
1

b
L (4.22)

is a Markov kernel that is Pb f is positive bouded measurable if f is, and Pb 1 = 1.
Let Y = (Yn )n∈N be a discrete time Markov chain with transition kernel Pb . Let
N = (Nt )t≥0 be a standard Poisson process on the line with rate b , independent
from Y . Then

X t = YNt
(4.23)

is a Mrakov process with generator L.

Proof. Consider the filtrationFt =σ(Yn∧Nt
, n ∈N; Ns , s ≤ t ). The X t isFt mea-

surable.
First we are going to prove that (Ñu =Nt+u −Nt , u ≥ 0) is independent fromFt .
By the monotone class theorem it suffices to prove that

E [U V ] =E [U ]E [V ] (4.24)

with U =
∏K

j=1 h j (Ñu j
), V =

∏

1≤i≤L fi (Yni∧t )
∏

1≤l≤M g l (Nsl
), u1 < u2 < uM , n1 <

n2 < · · · < nL , s1 < · · · < sM ≤ t and the functions fi , g l , h j positive measurable
bounded.
This is indeed true since

E [U V ] =
∑

ml ,pj

P
�

Nsl
=ml , Ñu j

= pj

�∏

h j (pj )
∏

g l (ml )E
�∏

fi (Yni∧t )
�

=
∑

ml ,pj

P
�

Nsl
=ml

�

P
�

Ñu j
= pj

�∏

h j (pj )
∏

g l (ml )E
�∏

fi (Yni∧t )
�

=E [U ]E [V ]

Now we are going to prove that if we define

Pt f (x ) := e t L f (x ) =
∑

n≥0

t n

n !
L n f (x )

which is well defined on bE since L is bounded, we have

E
�

f (X t+s ) | Ft

�

= Ps f (X t ) , (4.25)

for all positive bounded measurable f .
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We decompose with respect to the values of Ñs =Nt+s−Nt , which is independent
ofFt

E
�

f (X t+s ) | Ft

�

=E
�

f (YNt+Ñs
) | Ft

�

=
∑

k

E
�

f (YNt+k )1(Ñs=k ) | Ft

�

=
∑

k

P
�

Ñs = k
�

E
�

f (YNt+k ) | Ft

�

=
∑

k

P
�

Ñs = k
�

p k
b f (YNt

)

=
∑

k

e −b s (b s )k

k !
p k

b f (YNt
)

= e −b s e b s Pb f (X t ) = e s L f (X t ) ,

since e −b s e b s Pb = e −b s I+b s (I+ 1
b L ) = e s L .

The preceding construction dates back at least to Çinlar[7]
{thm:compbounded}

Theorem 4.9. Assume that q1, q2 are finite transition kernels on (E ,E ) a Polish
space, with bounded rates, such that the associated generators satisfy L1 ≺ L2.
Then the associated semigroups satisfy forall t , P1(t )≺ P2(t ).

Proof. Let b > supx q1(x ) + supx q2(x ). Let Y1, Y2 be discrete time Markov chains
associated to

Pb ,i := I +
1

b
L i . (4.26)

Then L1 ≺ L2 implies immediately that Pb ,1 ≺ Pb ,2. Indeed let A ∈M and x1 ≺ x2.
If both x1, x2 are in A or AC , since L11A(x1)≤ L21A(x2)we have Pb ,11A(x1)≤ Pb ,21A(x2).
Since A is monotone the only case left to examine is x1 /∈ A and x2 ∈ A. We have

L11A(x1) = q1(x1, A)≤ q1(x1) , and L21A(x2) = q2(x2, A)−q2(x2)≥−q2(x2)
(4.27)

Therefore

Pb ,11A(x1)−P21A(x2) =
1

b
(L11A(x1)− L21A(x2))−1≤

1

b
(q1(x1) +q2(x2))−1≤ 0 .

Let now N = (Nt , t ≥ 0) be a Poisson process with rate b , independent from Y1

and Y2. Let X i (t ) = Yi Nt . Then, for any positive measurable f

P1(t ) f (x1) =Ex1

�

f (Y1(Nt ))
�

=
∑

n

P (Nt = n )Ex1

�

f (Yn )
�

by independence

=
∑

n

P (Nt = n )P n
b ,1 f (x1)

≤
∑

n

P (Nt = n )P n
b ,2 f (x2) since Pb ,1 ≺ Pb ,2

= P2(t ) f (x2) .
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5 Feller’s construction of Markov jump process with
unbounded rates

Assume that there exist borel subsets En o fE such that Bn ↑ E and supnn
q (x )≤ n .

This is the case if q is locally bounded and E is locally compact separable. Then
there exists on E∆ = E ∪{∆} a Markov jump process X̄ with generator L̄ such that

• q̄ (x , B ) = q (x , B ) if B ∈ E

• if ζ=
�

inf t ≥ 0 : ¯X (t ) =∆
	

, then∆ is an absorbing point a.e. ∀t ≥ ζ, X (t ) =
∆.

We say that X t = X̄ t 1(t<ζ) is a sub Markov jump process defined up its explosion
time ζ. For bounded f ∈ bE ,

M
f

t := f (X t )− f (X0)−
∫ t

0

L f (X s )d s (t <ζ) (4.28)

is a local martingale with L f (x ) =
∫

q (x , d y )( f (y )− f (x )). Indeed, we know that

Nt = f (X̄ t )− f (X̄0)−
∫ t

0
L̄ (X s )d s is a martingale, hence Nt∧T

E C
n

is, with f extended

by f (∆) = 0, so L̄ f (x ) = L f (x ).

6 Unbounded rate jump Markov process

Assume that (E ,E ) is Polish and that there exists Gδ’s En ↑ E such that supEn
q (x )<

+∞ and
Hn =

�

y ∈ E \En : ∃x ∈ En , x ≺ y
	

is monotone , (4.29) {eq:comp27}{eq:comp27}

and if Hn 6= ;, then there exist bn ∈Hn such that

∀x ∈ En , x ≺ bn . (4.30) {eq:comp28}{eq:comp28}

For example, if E =Rd ,Zd , . . . and q is locally bounded one could set

En = {x ∈ E :−n ≤ x ≤ n} , bn = (n +1, . . . , n +1) . (4.31)

with ≤ the classical lexical order.

Theorem 4.10. Assume that q1, q2 are finite transition kernels on (E ,E ) such that
the associated generators satisfy L1 ≺ L2 and such that supx∈En

qi (x )<+∞. Then
the associated semigroups satisfy forall t , P1(t )≺ P2(t ).

Proof. This is Chen [6, Theorem 5.47]. The idea is to build jump processes on
En + {bn}, apply the preceding results and taking limits.
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Definition 4.2. We say that the semi group P (t ) is monotone if P (t )≺ P (t ) that is
if for any f ∈ bM

x1 ≺ x2 =⇒ ∀t , P (t ) f (x1)≤ P (t ) f (x2) (4.32)

The comparison theorem is simpler when one of the processes is itself mono-
tone.

Proposition 4.11. Assume that q1, q2 are finite transition kernels on (E ,E ), one of
them monotone, such that the associated generators satisfy

L11A(x )≤ L21A(x ) (∀A ∈M , x ∈ E ) (4.33)

and supx∈En
qi (x ) < +∞. Then the associated semigroups satisfy forall t , P1(t ) ≺

P2(t ).

Proof. Say that P1(t ) is monotone. Then the assumption enables to prove as in
Theorem 4.9 that for f ∈ bM ,

P1(t ) f (x )≤ P2(t ) f (x ). (4.34)

Therefore, if x1 ≺ x2,

P1(t ) f (x1)≤ P1(t ) f (x2)≤ P2(t ) f (x2) (4.35)

Let us give a direct proof due to Rüschendorf [8]. Let us assume that for every
f ∈ bM+, L1 f ≤ L2 f and that P2(t ) is monotone. Fix f ∈ bM+ and consider

F (t , x ) = P2(t ) f (x )−P1(t ) f (x ) . (4.36)

Then

∂t F (t , x ) = L2P2(t ) f (x )− L1P1(t ) f (x ) = L1F (t , .)(x ) +H (t , x ) (4.37)

with
H (t , x ) = L2P2(t ) f (x )− L1P2(t ) f (x ) = (L2− L1)g (x ) (4.38)

with g (x ) = P2(t ) f (x ) which by assumption is in bM+. Therefore, H (t , x ) ≥ 0
which is a crucial ingredient in the proof.
Observe now that

d

d s
P1(t − s )F (s , x ) = P1(t − s )∂s F (s , x )−P1(t − s )L1F (s , x ) = P1(t − s )H (s , x )≥ 0

(4.39)
Integrating this inequality between 0 and t yields then

F (t , x )−P1(t )F (0, x ) =

∫ t

0

P1(t − s )H (s , x )≥ 0 (4.40)

and since F (0, x ) = 0 this yields F (t , x )≥ 0.
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7 Application

Comparison of Birth Death processes

As a warm up example we shall solve the problem of the introduction. qi , i = 1, 2
are BD processes with brth and death rates λi ,µi such that λ1 ≤ λ2 and µ1 ≥ µ2.
The generators are thus

L i f (x ) = x (λi ( f (x +1)− f (x ))+µi ( f (x −1)− f (x ))) . (4.41)

We use the classical order on N : x ≺ y if x ≤ y . Hence, a monotone set A is of
the type A = [n ,+∞) and we have

L i 1A(x ) = xλi 1(x=n−1)− xµi 1(x=n ) . (4.42)

Assume x1 ≤ x2. If x1 ∈ A, is n ≤ x1, then

L11A(x1) =−xµ1 1(x1=n ) ≤ L21A(x2) =−xµ2 1(x2=n ). (4.43)

If x2 /∈ A, i.e x2 < n , then

L11A(x1) =λ1 1(x1=n−1) ≤λ2 1(x2=n−1) = L21A(x2) .

Therefore by the preceding theorem P1(t ) ≤ P2(t ) and since f (x ) = −1(x=0) is
monotone whenever x1 ≤ x2, P1(t ) f (x1)≤ P2(t ) f (x2) that is

Px1

�

X 1
t = 0

�

≥Px2

�

X 2
t = 0

�

. (4.44)

Remark. Observe that , taking P2 = P1 we have proved that birth death processes
are monotone.

Comparison of More General Jump Processes

We are now going to compare Markov jump processes that we consider in our law
of large numbers. They have been introduced by Kurtz [9] as density dependent
Markov processes. They have generators

L i f (x ) =
k
∑

j=1

β i
j (x )( f (x +h j )− f (x )) . (4.45)

with locally bounded non negative rate functions β i
j and h j ∈Zd .

We say that the vector h is quasi monotone if for any monotone set A and x1 ≺ x2

if both x1, x2 are in A or in AC then 1A(x1+h )−1A(x1)≤ 1A(x2+h )−1A(x2).

Proposition 4.12. If, for each j ,

1. either h j is quasi monotone and x1 ≺ x2 implies β1(x1)≤β2(x2)

2. either −h j is quasi monotone and x1 ≺ x2 implies −β1(x1)≤−β2(x2)

Then L1 ≺ L2 and thus forall t ≥ 0, P1(t )≺ P2(t ).
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The comparison of BD process is a simple application of this proposition with
h1 = +1, β1

1 (x1) = λ1 x1 ≤ λ2 x2 = β2
1 (x2) and h1 = +1 is quasi monotone since if A

is monotone, that is A = [n ,+∞) then 1A(x +1)−1A(x ) = 1(x=n−1)− 1(x=n ).
As before, everything is simpler when one of the processes is itself monotone.

Proposition 4.13. Assume that either X1 or X2 is monotone. If for A ∈ M and
forall x , L11A(x )≤ L21A(x ) then P1(t )≺ P2(t ).

Comparison of SIR and BD processes

The SIR process has generator on Z 3:

L f (x ) =β1(x )( f (x +h1)− f (x )) +β2(x )( f (x +h2)− f (x )) (4.46)

with,if x = (s , i , r ) ∈Z3
+, h1 = (−1, 1, 0), β1(x ) =β s i , h2 = (0,−1, 1), β2(x ) = γi .

{pro:majsirbd}
Proposition 4.14. Let X t = (St , It , Rt )be a SIR process with N = 〈X0, 1〉= S0+I0+R0

with parameters β ,γ and let Zt be a linear BD process with birth rate λ=βN and
µ= γ starting from Z0 ≥ I0. Then

It ≺ Zt (4.47)

Proof. We introduce Y a Markov jump process on Z3 with generator

L Y f (x ) = β̄1(x )( f (x +h1)− f (x ))+β2(x )( f (x +h2)− f (x )) (4.48)

with β̄1(x ) =βN i .

Our state space is E = [0, N ]3 ∩Z3 and Y0
d=X0. The partial ordering we consider

is x = (s , i , r )≺ x ′ = (s ′, i ′, r ′) if and i ′ ≥ i .
We check immediately that if x ≺ x ′ then β̄1(x ′) = βN i ′ ≥ β1(x ) = β s i . A set
A is monotone if for some n A = {(s , i , r ) : i ≥ n}. We check immediately that
h1 = (−1, 1, 0) is quasi monotone since if x ≺ x ′ and both x , x ′ are in A or in AC

then
g (x ) = 1A(x +h1)−1A(x ) = 1(i+1≤n )− 1(i≤n ) ≤ g (x ′)

Similarly −h2 is quasi monotone. And thus if we let Yt = (S ′t , I ′t , R ′t ) with Y0 ∼
(S0, Z0, R0) we have X0 ≺ Y0 and thus X t ≺ Yt . We now conclude since the I ′t is a
BD process starting from Z0.

Corollary 4.15. Let X be SIR process with parameters β/N ,γ. Assume that the
basic reproduction number R0 = β/γ ≤ 1, initial population X0 = (S0, I0, R0) with
〈X , 1〉=N . Then the number of infected persons It goes to 0 in a time of order log I0

with a maximum of order O (I0).

Proof. We have It ≺ Zt and Wt = Zt e −(β−γ)t is a UI martingale converging to W∞
of expectation E [Z0] =E [I0]. Therefore maxt It ≺max Wt is of order I0.
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8 Killed processes and Markovian jump semigroups

Let X = (X t , t ≥ 0) be a Markov jump process dénied on the polish space (E ,E )
with generator

L f (x ) =

∫

E

( f (y )− f (x ))q (x , d y ) ( f ∈ bE ) . (4.49)

Define for A ∈ E
T = TAc := inf t > 0 : X t ∈ AC . (4.50)

Let A ∈ E be such that ∀x ∈ A, q (x )> 0.
We letA = A∩E be the trace sigma field, and bA be the set of functions f : A→
R, bounded, E measurable. For f ∈ bA , and t ≥ 0 we let

St f (x ) :=Ex

�

f (X t )1(t<T )
�

(x ∈ A). (4.51)

Proposition 4.16. (St , t ≥ 0) is a sub Markovian jump semigroup on bA , that is

1. If f ≥ 0, then St f ≥ 0 and St 1≤ 1.

2. St+s = St ◦Ss

3. S0 f (x ) = limt ↓0 St f (x ) = f (x ).

Proof. 1. The first assertion is obvious.

2. For the second, we observe that

1(t+s<T ) = 1(s<T )1(t<T ) ◦θs . (4.52)

Therefore, by Markov Property applied at time s

St+s f (x ) =Ex

�

1(s<T )Ex

�

( f (X t )1(t<T )) ◦θs | Fs

��

=Ex

�

1(s<T )EX s

�

f (X t )1(t<T )
��

=Ex

�

1(s<T )St f (X s )
�

= Ss (St f )(x ) .

3. We have obviously for x ∈ A, S0 f (x ) = f (x ) since T ≥ T1 the first jump time
of X . For t > 0, we decompose the expectation with respect to the value of
T1 ∼E (q (x )) to obtain

St f (x ) =E
�

f (X t )1(t≤T1)
�

+E
�

f (X t )1(T1<t )1(t<T )
�

= f (x )e −t q (x )+

∫ t

0

q (x )e −s q (x )E
�

f (X t )1(t<T ) | T1 = s
�

d s

= f (x )e −t q (x )+

∫ t

0

e −s q (x )
�∫

q (x , d y ) f (y )1(y ∈A)St−s f (y )

�

d s
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Indeed we know that XT1
and T1 are independent, with XT1

with law 1
q (x )q (x , d y )

so by the strons Markov property at time T1

E
�

f (X t )1(t<T ) | T1 = s
�

=

∫

P
�

XT1
∈ d y

�

E
�

f (X t )1(t<T ) | T1 = s , XT1
= y

�

=

∫

1

q (x )
q (x , d y )1(y ∈A)E

�

f (X t )1(t<T ) | T1 = s , XT1
= y

�

=

∫

1

q (x )
q (x , d y )1(y ∈A)E

�

( f (X t−s )1(t−s<T )) ◦θT1
| T1 = s , XT1

= y
�

=
1

q (x )

∫

q (x , d y )1(y ∈A)St−s f (y ) .

Hence

St f (x ) = f (x )e −t q (x )+

∫ t

0

e −(t−s )q (x )
�∫

q (x , d y ) f (y )1(y ∈A)Ss f (y )

�

d s

(4.53) {eq:comp:27}{eq:comp:27}
and we have St f (x )→ f (x ) as t → 0 by dominated convergence.

It is easy to determine the generator of this Markovian semigroup by using the
last formula (4.53).

Lemma 4.17. For every f ∈ bA and x ∈ A, the following limit exists

G f (x ) = lim
t ↓0

1

t

�

St f (x )− f (x )
�

(4.54)

and we have

G f (x ) = q (x ) f (x )−
∫

A

qA(x , d y ) f (y ) , (4.55)

with qA(x , d y ) = q (x , d y )1(y ∈A). Furthermore, the semigroup property implies
that for t > 0

d

d t
St f (x ) =G St f (x ) = St G f (x ) . (4.56)

We can always extend a submarkovian semigroup to a Markovian one by adding
a cemetary point∆. On A∆ = A ∪{∆}we set Pt f (∆) = f (∆) and for x ∈ A,

Pt f (x ) = St f (x ) + f (∆)(1−Px (t < T )) . (4.57)

We have of course, Pt f (x ) =Ex

�

f (Yt )
�

with Yt = X t 1(t<T )+∆1(t≥T ). The genera-
tor is

L̄ f (x ) =

∫

q̄ (x , d y )( f (y )− f (x )) , (4.58)
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with q̄ (x , B ) = q (x , B ) if B ⊂ A and q̄ (x ,{δ}) = q (x , AC ). Therefore if f (∆) = 0 ,
G f (x ) = L̄ f (x ).
We now suppose that E is endowed with a measurable partial ordering. We ex-
tend the partial order to A∆ by setting∆≺ x forall x .
If B ⊂ A∆ is monotone then either∆ ∈ B and then B = A∆ , either∆ /∈ B and B is
monotone in A.
Therefore we have L̄1 ≺ L̄2 iff for any monotone B in A, and x1 ≺ x2:

• either x1, x2 ∈ B and q1(x , B )−q1(x )≤ q2(x , B )−q2(x )

• either x1, x2 /∈ B and q1(x , B )≤ q2(x , B )

In ohter words we only have to check that the conditions of L1 ≺ L2 for x1, x2 ∈ A
and monotones B ⊂ A.

Proposition 4.18. Assume L̄1 ≺ L̄2. Then there exists a coupling (X1, X2) such that

TAC (X1)≤ TAC (X2) , (4.59)

and
X1(t )≺ X2(t ) on [0, TAC (X1)), . (4.60)

Proof. We have L̄1 ≺ L̄2, so we can construct the coupling for the killed processes
Y1(t )≺ Y2(t ). If we have TAC (X1)> TAC (X2), this implies that for some t , Y2(t ) =∆
and Y1(t ) 6=∆which is contradictory.

9 Another comparison between SIR and BD processes

Let X t = (St , It , Rt ) be a SIR process with N = 〈X0, 1〉= S0+I0+R0 with parameters
β ,γ. Let 0< ε< 1 and let Zt be a linear BD process with birth rate λ= βN (1−ε)
and µ = γ starting from Z0 = I0. Let Bt be the number of births in Z until time t
and T = inf{t > 0 : Bt < S0−N (1−ε)}.

{pro:minsirbd}
Proposition 4.19. There exists a coupling such that

Zt ≤ It o n [0, T ) (4.61)

Proof. We consider X̄ t = (S̄t , Ī,R̄t ) a jump Markov process with generator

L̄ f (x ) = β̄1(x )( f (x +h1)− f (x ))+β2(x )( f (x +h2)− f (x )) , (4.62)

withβ1(x ) =βN (1−ε)i . We consider the same order on E =
�

x = (s , i , r ) ∈ (Z∩ [0, N ])3
	

as in Proposition 4.14
With A = {x ∈ E : s ≥N (1−ε)}we have β̄1(x )≤β1(x ) in A. We want to prove that
we have X̄ ≺ X on [0, TAC (X̄ ). Since X̄ is monotone, we only need to prove that if
x ∈ A and B is monotone in A, then

L̄1B (x )≤ L1B (x )
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Since B is of the type B = {x ∈ A : i ≥ n} then the proof goes as in Proposition
4.14.
In the process X̄ the process (̄I ) is a linear BD process with birth rate βN (1− ε)
and death rate γ, and S̄t = S0−Bt since S̄t decreases by 1 exactly when It increases
by 1. Therefore TAC = T defined above and we are done.

Remark. Observe that by the representation (5.1)

Zt = Z0+P1(λ

∫ t

0

Zs d s )−P2(

∫ t

0

µZs d s )

and Bt = P1(λ
∫ t

0
Zs d s )We know that in the critical case, on the non explosion set

of Z , Z grows exponentially fast, therefore with very high probability, if S0 is of
order N , then T is of order log(N ) (since P (t )/t ∼ 1).



5
Law of Large numbers for Random Markov

Epidemic Models

1 Another representation of Some Markov jump
processes

{sec:anoth-repr-some-1}{pro:anoth-repr-some}
Proposition 5.1. Let (hi )1≤i≤k be jump vectors inZd and (Pi )1≤i≤k be independent
rate 1 Poisson processes independent from a random variable X0 ∈ Zd . Let β j :
Zd →R+ for 1≤ j ≤ k .
Then the equation

X t = X0+
k
∑

j=1

h j Pj

�∫ t

0

β j (X s )d s

�

, (5.1) {eq:defmarkepidemic}{eq:defmarkepidemic}

admits a.s. a unique solution which is a Markov jump process on Zd with gener-
ator

L f (x ) =
k
∑

j=1

β j (x )( f (x +h j )− f (x )) ( f bounded.) (5.2) {eq:genmarkovepidemic}{eq:genmarkovepidemic}

Remark. Let us observe that this process may have a finite explosion time ζ.
Furthermore, by the construction procedure if X0 ≥ 0 the forall t , X t ≥ 0.

Example 5.1. 1. The birth death process. d = 1, h1 = 1,β1(x ) = λ(x ), h2 =
−1,β2(x ) =µ(x ).

2. The SIR process d = 3, for x = (s , i , r ) ∈Zd
+,

h1 = (−1, 1, 0) , β1(x ) =λs i

h2 = (0,−1, 1) β2(x ) = γi

29
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λ is the percapita infectious contact rate and γ the percapita recovery rate.
If X t = (St , It , Rt ) then X is the solution of the SDE

St = S0−P1

�∫ t

0

λSs Is d s

�

. (5.3)

It = I0+P1

�∫ t

0

λSs Is d s

�

−P2

�∫ t

0

γIs d s

�

. (5.4)

Rt =R0+P2

�∫ t

0

γIs d s

�

. (5.5)

Proof. SInce independent Poisson processes do not jump at the same time a.s.
we can do a pathwise construction of X t , indectively along the jumps of X .
Let Z0 = X0, . . . , Zn be the n first values of the jump chain, S1, . . . ,Sn the holding
times, TN = S1 + · · ·+ Sn the n-th jump time. Then the next jup time is Tn+1 =
Tn +Sn+1 is the first time t > Tn such that there exists j with

Pj

�

∫ Tn

0

β j (X s )d s +β j (Zn−1)(t −Tn )

�

−Pj

�

∫ Tn

0

β j (X s )d s

�

6= 0 . (5.6)

By the strong Markov property, these are independent Poisson processes of rates
α j =β j (Zn−1). Let Vj be their respective first jump times. Then Vj ∼E (α j ), Sn+1 =
inf j Vj ∼ E (

∑

j α j ) and Zn = Zn−1 +h j with probability
α j

∑

i αi
. This is exactly the

usual construction of the Markov jump process with generator L given by (5.2).

2 A non explosion criteria

We shall give a sufficient condition for non explosion for the process defined by
Proposition 5.1. We shall exhibit a Lyapunov function if we make the following
assumption on rates. for x ∈Zd we let 〈x , 1〉=

∑d
i=1 xi (if x ≥ 0, the 〈x , 1〉= ‖x‖1.

Assumption A : rate control Let J =
�

j :



h j , 1
�

> 0
	

Assume that for some Cq <
+∞,

sup
j∈J
β j (x )≤Cq (1+ 〈x , 1〉) . (5.7)

{pro:non-expl-crit}
Proposition 5.2. Assume the rate control and that for some p ≥ 1, E

�

〈X0, 1〉p
�

<
+∞ and X0 ≥ 0 a.s. Then, a.s. the process does not explodes and

∀T > 0 , sup
t≤T
E
�

〈X t , 1〉p
�

<+∞ . (5.8)

Proof. We let Zt = 〈X t , 1〉. Then given a > 0, we can consider bounded rates
βa

j (x ) = β j (x )1(〈x ,1〉≤a ) and construct a process that has infinite life time X a (for
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example by Cinlar construction we see that it does not explode) and the corre-
sponding generator. We let

τa = inf t > 0 :



X a
t , 1

�

≤ a (5.9)

and we define without ambiguity X t = X a
t on [0,τa [. We let ζ := lima↑+∞τa . This

is the lifetime of X .
Given a locally bounded function f : Zd → R, we define f a (x ) = f (x )1(〈x ,1〉≤a )
and

f a (X a
T ) = f a (X a

0 ) +M
f a

t +

∫ t

0

L a f a (X a
s )d s , (5.10)

with M f a
a martingale. Since L a f a (x ) = L f (x ) for 〈x , 1〉 ≤ a we have, if we set

M
f

t =M
f a

t on [0,τa [,

f (X t ) = f (X0) +M
f

t +

∫ t

0

L f (X s )d s (t <ζ) .

From now on, we shall drop the superscript a , but keep in mind that on [0,τa [
we are dealing with X a , M f a

, ...
Observe that

L f (x ) =
∑

j

β j (x )
��

〈x , 1〉+



h j , 1
��p −〈x , 1〉p

�

≤
∑

j∈J

β j (x )
��

〈x , 1〉+



h j , 1
��p −〈x , 1〉p

�

≤
∑

j∈J

β j (x )Cp 〈x , 1〉p−1

≤Cp Cq k (1+ 〈x , 1〉)〈x , 1〉p−1

≤C (1+ 〈x , 1〉p ) =C f (x ) .

Since M
f

t∧τa
is a true martingale we get

E
�

f (X t∧τa
)
�

=E
�

f (X0)
�

+E
�∫ t∧τa

0

L f (X s )d s

�

=E
�

〈X0, 1〉p
�

+C

∫ t

0

E
�

1+



X s∧τa
, 1
�p �

d s .

By Gronwall’s Lemma, there exists a constant C ′ that does not depend on a , but
only on E

�

〈X0, 1〉p
�

such that

1+E
�


X t∧τa
, 1
�p �≤C ′(1+ t )e t C ′ (5.11) {eq:1-+-espcrochetx_twta}{eq:1-+-espcrochetx_twta}

In particular s upt≤TE
�


X t∧τa
, 1
�p �
<+∞.
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Consequently, ζ := lima↑+∞τa = +∞ a.s. Indeed, otherwise thaere exists T > 0
such that P (ζ≤ T )> 0. Then

C ′(1+T )e T C ′ ≥E
�


XT ∧τa
, 1
�p �≥E

�


XT ∧τa
, 1
�p

1(τa≤T )
�

≥ a pP (τa ≤ T )≥ a pP (ζ≤ T ) →+∞(as a →+∞)

which is absurd. Hence ζ = +∞ a.s. and by Fatou’s Lemma letting a ↑ +∞ in
(5.11) we get

1+E
�

〈X t , 1〉p
�

≤C ′(1+ t )e C ′t . (5.12)

With a little extra work we can get a maximal inequality.
{pro:non-expl-crit-1}

Proposition 5.3. Under the same assumptions, for any q ∈
�

1, p+1
2

�

and any T > 0,
we have

E
�

sup
t≤T
〈X t , 1〉q

�

<+∞ . (5.13)

Proof. With f (x ) = 〈x , 1〉q we have L f (x )≤C (1+ f (x )) and thus

f (X t )≤ f (X0) +M
f

t +C

∫ t

0

(1+ f (X s ))d s . (5.14)

Therefore, if Yt := sups≤t f (X s )we have for t ∈ [0, T ]

Yt ≤ Y0+ sup
t≤T

M
f

t +C t +C

∫ t

0

Ys d s . (5.15)

Hence, by Gronwall’s Lemma

YT ≤ (Y0+ sup
t≤T

M
f

T +C T )e C T . (5.16)

It remains to prove that E
�

supt≤T M
f

t

�

< +∞. Remember that the predictable

quadratic variation of the martingale M f is given by the carré du champ operator




M f , M f
�

t
=

∫ t

0

(L f 2−2 f L f )(X s )d s . (5.17)

We have

L f 2(x )−2 f (x )L f (x ) =
∑

j

β j (x )( f
2(x +h j )− f 2(x )−2 f (x )( f (x +h j )− f (x )))

=
∑

j

β j (x )( f (x +h j )− f (x ))2

=
∑

j∈J

β j (x )( f (x +h j )− f (x ))2 ( f (x +h j ) = f (x ) if j /∈ J )

≤C (1+ 〈x , 1〉)(1+ 〈x , 1〉q−1)2

≤C (1+ 〈x , 1〉p ) .
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Hence, by Doob’s maximal inequality

E

�

�

sup
t≤T

M
f

t

�2�

≤CE
�

(M f
T )

2
�

=CE
�


M f , M f
�

T

�

≤C

∫ T

0

(1+E
�

〈X t , 1〉p
�

)d t

≤C sup
t≤T
E
�

〈X t , 1〉p
�

<+∞ .

Corollary 5.4. Assume thaht f locallly bounded satisfies for a constant C ,

�

� f (x )
�

�+
�

�L f (x )
�

�≤C (1+ 〈x , 1〉q ) , (5.18)

with q ∈
�

1, 1
2 (p +1)

�

.. Then the process

M
f

t := f (X t )− f (X0)−
∫ t

0

L f (X s )d s (5.19)

is a true martingale.

Proof. M = M f is a local martingale, and thus Mt∧τa
is a bounded local mar-

tingale, thus a true martingale. Observe that ZT := supt≤T

�

�

�M
f

s

�

�

� ∈ L 1(P) so if

0 ≤ s ≤ t ≤ T and A ∈ Fs we can apply dominated convergence to the equal-
ity

E
�

Mt∧τa
1A

�

=E
�

Ms∧τa
1A

�

. (5.20)

3 The law of large numbers

In a SIR model with an initial population N large, we are interested in the pro-
portions of susceptibles, infected and recovered.
More generally, we consider Markov epidemic models X (N ) with rates β (N )j de-
pending on a scale factor N that will goe to infinity. We are going to study the
behaviour of

Z N
t :=

X (N )t

N
. (5.21)

It’s generator is

L Z N
f (z ) = L X (N ) f (

.

N
)(N z ) =

∑

j

β (N )j (z )( f (z +
h j

N
)− f (z )) . (5.22)
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We have the representation in terms of independent poisson processes pJ and
thier compensated martingales P̃j (t ) := Pj (t )− t :

Z N
t = Z0+

∑

j

h j

N
Pj

�∫ t

0

β (N )j (N Z N
s )d s

�

(5.23) {eq:defznlaw-large-numbers}{eq:defznlaw-large-numbers}

= Z N
0 +

∑

j

H j

N

∫ t

0

β (N )j (N Z N
s )d s +

∑

j

h j

N
P̃j

�∫ t

0

β (N )j (N Z N
s )d s

�

If we neglect the martingale terms, and we impose that for functionsβ j :Rd t oR+
smooth enough, we have

β (N )j (N z ) :=Nβ j (z ) (5.24) {eq:betanjnz-:=-n}{eq:betanjnz-:=-n}

and we have Z N
0 → z0 ∈Rd

+, then Z N will be close to the solution of the ODE

z (t ) = z0+
∑

j

h j

∫ t

0

β j (z (s ))d s (5.25)

i.e.
z ′(t ) = b (z (t )) with b (z ) :=

∑

j

h jβ j (z ), z (0) = z0 . (5.26) {eq:zt-=-bzt}{eq:zt-=-bzt}

We also see that for smooth f , by a Taylor approximation,

L Z N
f (x )→

∑

j

β j (x )∇ f (z ).h j =∇ f .b (z ) . (5.27)

Theorem 5.5. Assume that the rate functions β j are positive measurable and lo-
cally bounded. Assume that b (z ) =

∑

j h jβ j (z ) is locally Lipschitz. Assume that

the sequence of positive rv’s Z N
0 satisfy supN E

�

< Z N
0 , 1>3

�

<+∞ and Z N
0 → z0 in

distribution. Then the sequence of processes (Z N (t ), 0 ≤ t ≤ T ) defined by (5.23)
converges in probability for the L∞([0, T ]) norm to the continuous deterministic
function z solution of (5.26).

Proof. Assume first that the β j are uniformly bounded and b globally Lipschitz

sup
j

sup
z
β j (z )≤M <+∞ and sup

y 6=z

�

�b (z )− b (y )
�

�≤M
�

�y − z
�

� . (5.28)

Since we have

Z N
t = Z N

0 +

∫ t

0

b (Z N
s )d s +

∑

k

h j
1

N
P̃j

�

N

∫ t

0

β j (Z
N
s )d s

�

z (t ) = z0+

∫ t

0

b (z (s ))d s
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we get for t ∈ [0, T ]

�

�Z N
t − z (t )

�

�≤
�

�Z N
0 − z0

�

�+M

∫ t

0

�

�Z N
s − z (s )

�

�d s +
1

N
C sup

j
sup

0≤s≤N M T

�

�P̃j (s )
�

� .

By Gronwall’s Lemma, this implies for t ∈ [0, T ]

sup
t≤T

�

�Z N
t − z (t )

�

�≤
�

�

�Z N
0 − z0

�

�+
1

N
C sup

j
sup

0≤s≤N M T

�

�P̃j (s )
�

�

�

e M t

We conclude that this quantity converges in probability to 0 thanks to the follow-
ing Lemma

{lem:pttunif}
Lemma 5.6. If P (t ) is a standard Poisson process and P̃ (t ) = P (t )− t then for all
α> 1

2 ,
1

nα
sup

t ∈[0,n ]

�

�P̃ (t )
�

�→ 0 a .s . (5.29)

Indeed first we have by assumption
�

�Z N
0 − z0

�

� Fix 1
2 <α< 1. There exists C j (ω)<

+∞ such that a.s.
∀n , sup

t≤n

�

�P̃j (t )
�

�≤ nαC j (5.30)

and thus
1

N
sup

j
sup

0≤s≤N M T

�

�P̃j (s )
�

�≤
(N M T )α

N
sup

j
C j (ω)→ 0 . (5.31)

Let us consider now the general case. Looking closely at the proofs of Proposi-

tions (5.2) and (5.3), given T > 0 letUN := supt≤T




Z N
t , 1

�

. Since supN E
�




Z N
0 , 1

�3�

<
+∞we have

sup
N
E
�

U 2
N

�

<+∞ . (5.32)

The function b is locally Lipschitz and β j is locally bounded. Therefore, for any
A > 0 there exists MA <+∞ such that

sup
j

�

�β j (x )
�

�≤MA ,
�

�b (x )− b (y )
�

�≤MA (if 〈x , 1〉 ≤ A,



y , 1
�

≤ A) . (5.33)

We choose A > supt≤T z (t ). By the preceding arguments,on the event {UA ≤ A}

�

�Z N
t − z (t )

�

�≤C

�

�

�Z N
0 − z0

�

�+
1

N
sup

j ,0≤n≤N T MA

�

�P̃j (s )
�

�

�

e T MA

≤CA,T

��

�Z N
0 − z0

�

�+N α−1C (ω)
�

with C (ω) a finite random variable. On the other hand we have

P (UN ≥ A)≤
1

A2
E
�

U 2
N

�

≤
C

A2
. (5.34)
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Combining twe two, we show easily that for any ε> 0,

lim
N→+∞

P

�

∑

t≤T

�

�Z N
t − z (t )

�

�≥ ε

�

= 0 . (5.35)

Proof of Lemma 5.6. By Markov’s inequality, for all γ> 0,ε> 0

P (P (t )− t >ε)≤ e −γεE
�

e γ(P (t )−t )�= e x p
�

t (e γ−1−γ)−γε
�

. (5.36)

Taking the infimum, with respect to γ> 0, we get

P (P (t )− t >ε)≤
e ε

(1+ε/t )t+ε
(5.37)

Similarly,

P (P (t )− t <−ε)≤
e −ε

(1−ε/t )t−ε
(5.38)

Therefore, for 1/2<α< 1 and ε= t α we get

P
�

|P (t )− t | ≥ t α
�

≤ 2e −t 2α−1+o (t 3α−2) (5.39)

By Borel Cantelli supn n−α|P (n )−n |<+∞ a.e. Since t → P (t ) is increasing,

P (bt c)− bt c −1≤ P (t )− t ≤ P (bt c+1)− t (5.40)

And thus

sup
t≥1

|P (t )− t |
t α

<+∞ a .e . (5.41)

Hence,for η> 0,

n−(α+η) sup
t≤n
|P (t )− t | ≤ n−(α+η) sup

t≤1
|P (t )− t |+n−η sup

t≥1

|P (t )− t |
t α

→ 0 a .e . (5.42)

4 Generators and martingales

Assume that the generator is defined as L : bE → bE a linear operator on bounded
measurable functions

Proposition 5.7. For any f ∈ bE we have the decomposition

f (X t ) = f (X0) +

∫ t

0

L f (X s )d s +M
f

t (5.43)

with M f a martingale.
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Proposition 5.8. The martingale M f has predictable quadratic variation




M f , M f
�

t
=

∫ t

0

Γ f (X s )d s (5.44)

with Γ f = L ( f 2)−2 f L f the carré du champ operator. In particular

E
�

(M f
t )

2
�

=E
�


M f , M f
�

t

�

. (5.45)

Proof. Assume wlog that f (X0) = 0, then

M 2
t = ( f (X t )−

∫ t

0

L f (xs )d s )2 = f 2(X t )−2 f (X t )

∫ t

0

L f (X s )d s + (

∫ t

0

L f (X s )d s )2

(5.46)
But we know that

d f 2(X t ) = L f 2(X t ) , d t +d M
f 2

t (5.47)

If for example f (X t ) has finite variations, which is the case if X is piecewise con-
tinuous, we can apply the integration by parts formula to the second and third

terms to obtain, with It =
∫ t

0
L f (X s )d s

d M 2
t = L f 2(X t ) , d t +d M

f 2

t −2(d Mt + L f (X t )d t )It −2 f (X t )L f (X t )d t +2L f (X t )It d t

= d



M f , M f
�

t
+d M

f 2

t −2It d M
f

t



6
The duration of the basic stochastic epidemics

The stochastic SIR process is a pure jump Markov process X on E = Z3 (and a
density dependent Markov process) with generator, for x = (s , i , r ) and bounded
f

L f (x ) =
∑

j

β j (x )( f (x+h j )− f (x )) =
β

N
s i ( f (s−1, i+1, r )− f (s , i , r ))+γi ( f (s , i−1, r+1)− f (s , i , r )) ,

(6.1)
We have seen that since when x = (s , i , r ) ∈ N3 and x +h j /∈ N3, then β j (x ) = 0.
This ensures that starting from X0 ∈ N3 the process stays in N3 : this we shall
assume from now on. Letting Nt = ‖X t ‖1 =




X ,1
�

= St + It +Rt we see that for
every function g , if f (x ) = g (〈x , 1〉=we have L f (x ) = 0 so t → Pt f (x ) is constant
and this implies that Nt stays constant a.e. (since it is cadlag).

1 The start of the epidemic

By proposition 4.14, let us assume that we start wuth X0 = (N − 1, 1, 0) that is
N −1 susceptibles and one infected person. Then there exists a coupling with Z
a linear branching process with rates (β ,γ) starting from Z0 = I0 = 1 : a.e. forall t
, It ≤ Zt .
We define the probability of a major outbreak to be the supremum of the δ > 0
such that there exists ε> 0 and a N0 such that for any N ≥N0

P
�

TbεN c(I )<+∞| X0 = (N −1, 1, 0)
�

≥δ , (6.2)

with
Ta (I ) = inf{t > 0 : It ≥ a } . (6.3)

In words, the probability of a major outbreak is the probability that for large ini-
tial population N , starting with one infected individual, the population of in-
fected reaches a macroscopic level, that is a positive fraction of the initial popu-
lation.

38
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Assume thus that β < γ. Then the linear BD process Zt becomes a.s. extinct and
supt≥0 Zt <+∞. Therefore, as N →+∞,

P
�

TbεN c(I )<+∞| X0 = (N −1, 1, 0)
�

≤P
�

sup
t≥0

Zt ≥ εN

�

→ 0 . (6.4)

An important ingredient of the preceding limit is that the random variable supt≥0 Zt

does not depend on N . Therefore the probability of a major outbreak is 0.
Similarly, ifβ > γ, then Z becomes extinct with probabilityβ/γ and therefore the
probability of a major outbreak is less than 1−β/γ.
On the other hand, thanks to Proposition 4.19, given 0 < ε < 1 small enough so
thatβ (1−ε)>γ, we can construct a coupling with a linear birth and death process
Z̄ with rates (β (1−ε),γ) :

It ≥ Z̄t on [0, T ) , (6.5)

with T = inf{t > 0 : Bt <N −1−N (1−ε)} and Bt the process of number of births
of Z̄ .
Consider the martingale W̄t = e −r t Zt with r =β (1−ε)−γ> 0. On the set

�

W̄ > 0
	

,
of probability γ

β (1−ε) , the process Z̄t grows exponentially fast, so T is of order

log N and there is a η > 0 such that ZT ≥ ηN since we have Bt ≈ e r t (Use again
the comparison theorem to get a precise statement). Therefore, we have, for all
N large enough,

P
�

TbηN c(I )<+∞| X0 = (N −1, 1, 0)
�

≥P
�

Z̄ does not become extinct
�

≥
γ

β (1−ε)
.

(6.6)
In conclusion, ifβ > γ, the probability of a major outbreak is 1−γ/β , and the time
for the infected population to reach a positive fraction of the initial population
N is approximately log N .

2 The deterministic SIR epidemic model

Assume now that we have a SIR process with initial population X (N )0 = (N (1 −
ε),εN , 0). From the law of large numbers we now that Z N

t =
1
N X (N )t is uniformly

close to z (t ) = (s (t ), i (t ), r (t )) the solution of the SIR ODE

s ′ = b e t a s i (6.7)

i ′ =β s i −γi (6.8)

r ′ = γi (6.9)

with initial condition z (0) = (1−ε,ε, 0). Let us do a brief study of this ODE of the
type z ′ = b (z ) with b locally Lipschitz. Observe that b (z ) = 0 for z ∈ ∂ K with K
the positive orthant : the cone K = {z : s ≥ 0, i ≥ 0, r ≥ 0}. Therefore since z (0) ∈
K , z stays in K for all times (this is a classical result on monotone dynamical
systems : see e.g. Proposition 3.3 of [10])
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Observe now that n (t ) = s (t ) + r (t ) + i (t ) is constant : n ′(t ) = 0. thus, for all
t , n (t ) = n (0) = 1. We have s ′(t ) = b e t a s i ≤ 0, so it is a decreasing function,
and s (t ) ∈ [0, 1]. Therefore it converges to s (∞). SImilarly, r (t ) is increasing and
bound so converges to r (∞). Therefore i (t ) = 1− r (t )− s (t ) converges to i (∞).
Since

r (t ) = r (0) +

∫ t

0

r ′(s )d s = 0+γ

∫ t

0

i (s )d s (6.10)

and r (t ) stays bounded and i (t )→ i (∞), we have i (∞) = 0, and therefore r (∞)+
s (∞) = 1.
Moreover, s ′

s =−β i , thus

s (∞) = s (0)exp(−β
∫ ∞

0

i (s )d s ) = exp(−(β/γ)r (∞)) (6.11)

Combining all this yields that zε = 1− s (∞) = r (∞) is a solution of

1− zε = (1−ε)e −(β/γ)zε (6.12)

and therefore z = limε→0 zε is the unique solution of

1− z = e −R0z , (6.13)

with R0 =β/γ> 1 the basic reproduction number. Let us rewrite down this equa-
tion, withσ= 1− s = limε→0 s (∞)

R0σe −R0σ =R0e −R0 (6.14)

Thereforeσ=R0σ ∈ (0, 1) is the unique solution in (0, 1) of x e −x =R0e −R0 .

3 The end of the epidemic

Combining the law of large numbers, which we shall assume is an a.e. conver-
gence, and the preceding results, let us chooseε small enough so that R0s (∞)< 1
Let us choose T > 0 large enough so that R0s (T ) ≤ 1− 2η < 1 and consider X (N )

a SIR process starting from X (N )0 = (N (1−ε),εN , 0).If N0 is large enough, then for

N ≥N0, almost surely, R0
1
N S (N )T ≤ 1−η < 1 and thus we shall use strong markov

property at the finite time T = inf t > 0, R0S (N )T ≤N (1−η).
Using the comparison theorem, the extinction time of X (N ) from this time on, is
stochastically dominated by the extinction time of a linear birth and death pro-
cess Z with rates (β 1−η

R0
= γ(1−η),γ) which is subcritical, and thus goes extinct

in at most finite time that does not depends on N . Alas, the initial number Z0 is
less than N and we are left to prove that T0(Z ) =max(T1, ..., Tn ) the maximum of
the hitting time of zero for N independent branching processes starting from 1,
is of order log(N ). This is an easy exercice because T0 has an exponential tail.

P (T0 > t ) =P1(Zt 6= 0)∼ (1−λ/µ)e −(µ−λ)t . (6.15)



CHAPTER 6. THE DURATION OF THE BASIC STOCHASTIC EPIDEMICS 41

x 0 σ 1 R0

f ′(x ) + + 0 −

f (x )
0

f (R0)
1/e

f (R0)



7
Multi type Galtson Watson Processes

1 Motivation

Modelling the reproduction of bacteria in which a gene has two types of allele A
and B . We assume p1, p2,α1 ∈ (0, 1) and consider two cases α2 ∈ (0, 1) and α2 = 1
(B alleles only yield B Alleles).
The questions we want to answer are the following :

• Do we have extinction, survival ? starting from all A’s or all B’s or a mixture
?

• When there is non extinction what is the growth rate of the total population
?

• Do we have relative asymptotic frequencies of A and B ?

2 The model

The population at generation n is a line vector Zn = (Zn1, . . . , Znd ) of integer val-
ued random variables, with d the number of different types. The type of an indi-
vidual is an attribute that remains fixed throughout its lifetime. Individuals of the
same type have the same offspring distribution. Different individuals reproduce
independently.
The offspring of an individual of type i is distributed as ξi = (ξi 1, . . . ,ξi d ) and
assumed to be integrable. The process Zn satisfies the induction

Zn+1 =
d
∑

j=1

Zn j
∑

i=1

ξ
(n+1), j
i , (7.1) {eq:defgwmultitype}{eq:defgwmultitype}

with (ξ(n+1), j
i , n ≥ 0, i ≥ 1, 1≤ j ≤ d ) independent and ξ

(n+1), j
i distributed as ξ j .

42
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A A+A

A+B

†

A+B

B +B

†

B

p1α1

p2α2

1− p1

1− p2

p1(1− α1)

p2(1− α2)

Figure 7.1: Reproduction of Bacteria

Example 7.1 (bacteria reproduction). . i = 1 for type A, i = 2 for type B . Then

P (ξ1 = (0, 0)) = 1−p1 , P (ξ1 = (2, 0)) = p1α1 , P (ξ1 = (1, 1)) = p1(1−α1)

P (ξ2 = (0, 0)) = 1−p2 , P (ξ2 = (0, 2)) = p2α2 , P (ξ2 = (1, 1)) = p2(1−α2) .

The mean matrix is M = (mi , j )1≤i , j≤d with

mi , j =E
�

ξi j

�

=E
�

Z1 j | Z0 = ei

�

. (7.2)

The sigma-field isFn =σ
�

ξ
(k ), j
i , k ≤ n , j , i

�

and Zn is aFn Markov chain.

Lemma 7.1. If we take the conditional expectation of a vector to be the vector of
its conditinal expectations we have

E [Zn+1 | Fn ] = Zn M (7.3)

Proof.

E
�

Z(n+1),k | Fn

�

=
d
∑

j=1

Zn j
∑

i=1

E
�

ξ
(n+1), j
i ,k | Fn

�

=
d
∑

j=1

Zn j
∑

i=1

m j k =
d
∑

j=1

Zn , j m j k = (Zn M )k .

(7.4)
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Corollary 7.2. Let γ be a right eigenvector of M with eigenvalue λ ∈C. Then Yn =
λ−n Znγ is a martingale (possibly complex valued).

Therefore it should not be surprising that the growth rate of Zn is given, when
there is no extinction, by the largest modulus eigenvalue, the spectral radius

ρ(M ) := sup
�

|λ| :λ ∈ s p (M )
	

(7.5)

Gelfand’s formula yields that for any matrix norm

ρ(M ) = lim
n→+∞





M n






1/n
, (7.6)

and we know that ρ(M )< 1 iff M n → 0.
In the baceria example,

m11 =E [ξ11] = 2p1α1+P1(1−α1) = p1(1+α1), m12 = p1(1−α1), ... (7.7)

If α2 ∈ (0, 1)we have M >> 0 that is mi j > 0 for all entries i , j . On the other hand

if α2 = 1 then M is triangular with spectrum s p (M ) =
�

p1(1+α2), 2p2

	

.

Definition 7.1. A matrix M with non negative entries, M ≥ 0 is said to be inde-
composable or irreducible if∀i , j ∃r (M r )i j > 0. We say that the multitype branch-
ing process is indecomposable.

This means that every type of individual may have eventually a progeny of any
other type. We shall prove that then, when there is no extinction, for every start-
ing mixture of types the growth rate is the same and given by ρ.
We see on the bacteria example that this is not the case for decomposable case
α2 = 1 since we have two different rates.

3 Extinction probabilities

Proposition 7.3. Let fi (s ) = E
�

sξi 1
1 · · · sξi d

d

�

and f (s ) = ( f i (s ), 1 ≤ i ≤ d ). Then the
extinction probabilities

qi =P (Zn → 0 | Z0 = ei ) (7.8)

satisfy f (q ) = q .

Proof. As in dimension 1, condition on the first generation. There is extinction
iff there is extinction for all the GW processes of the descendants of the ancestor,
ξi k of type k , that have a probability qk of extinction therefore.

Assume that there exists a vector u ∈Rd with ui > 0 for all i , such that M u =ρu
with ρ =ρ(M ).
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Proposition 7.4. The process Wn = ρ−n Zn u is a positive martingale such that
si = P (W = 0 | Z0 = ei ) satisfies f (s ) = s . Therefore if ρ < 1, then there is almost
sure extinction. Assume ρ > 1, if forall i , k , E

�

ξi k log+ξi k

�

< +∞ then Wn is an
UI martingale. If, moreover, 0 is the only absorbing point of the chain Z , then s = q
: on non extinction the process grows exponentially.

Proof. Condition on the first generation : if w l , j is the variable corresponding to

the multitype GW process Z
l , j
n of the l -th child of type j of ;, then

Zn =
d
∑

j=1

ξi j
∑

l=1

Z
l , j
n−1 (7.9)

So taking limits in 1
ρn Zn u yields

W =
1

ρ

d
∑

j=1

ξi j
∑

l=1

W l , j (7.10)

And thus, by independence,

P (W = 0 | Z0 = ei ) =E



P

 

d
∑

j=1

ξi j
∑

l=1

W l , j = 0 | ξi j , 1≤ i ≤ d

!



=E
h
∏

s
ξi j

j

i

= f i (s ) .

(7.11)
SInce u >> 0, we have {W > 0} ⊂ {∀n , Zn > 0}. By monotonicity

qi =P (∃n : Zn = 0 | Z0 = ei ) (7.12)

is the smallest root of f (q ) = q since qi = lim ↑ qi ,n =P (Zn = 0 | Z0 = ei ) and qi ,0 =
0. So if s is another solution si ≥ 0 = qi ,0 implies si = f i (s ) ≥ f i (0) = qi ,1 and by
induction si ≥ qi ,n → qi .
Since Wn i a UI martingale, we have E [W | Z0 = ei ] =E [W0 | Z0 = ei ] = ui > 0 and
thus for all i , si < 1.

Observe that Mn = s Zn =
∏

s
Zn ,i

i is a martingale since

E [Mn+1 | Fn ] =EZn

�

s Z1
�

=
∏

fi (s )
Zn ,i =Mn (7.13)

Since Mn ∈ [0, 1] it is a UI martingale, and thus converges to M∞. The range
of Mn is discrete : E =

�∏

1≤i≤d s ni
i , ni ∈N

	

and therefore M∞ ∈ {0} ∪ E . When
M∞ ∈ E , then Mn is a stationary sequence that is ther exist n0(ω) such that for all
i ,fora all n ≥ n0, Zn ,i = Z∞,i Since the only absorbing point of Z is 0, this implies
that Z∞ = 0 is that the process goes extinct, and therefore M∞ = 1. Therefore

si =E [M0 | Z0 = ei ] =E [M∞ | Z0 = ei ] =E
�

M∞1(M∞∈E ) | Z0 = ei

�

(7.14)

≤P (Zn → 0 | Z0 = ei ) = qi . (7.15)

Combining everything we do get s = q .
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4 Perron Frobenius Theorem

This theorem gives sufficient conditions for matrices with positive entries to have
their spectral radius as the only eignevalue for a vecteur with strictly positive en-
tries.
For x ∈Rd we say that x ≥ 0 if forall i , xi ≥ 0. We say x > 0 if x ≥ 0 and x 6= 0, and
x >> 0 if forall i , xi > 0. We have the same notations for a real matrix A ∈Md×d .
Observe that if x > 0 and A >> 0 then Ax >> 0.

{lem:perr-frob-theor-1}
Lemma 7.5. If x >> 0 and y > 0 then a = sup

�

c > 0 : x ≥ c y
	

> 0 (with the con-
vention sup;=−∞) and ∃i s.t. xi = a yi .

Proof. Let c = inf xi
sup yj

> 0. Then, x ≥ c y , so a > 0. We have z = x − a y ≥ 0. If

z >> 0, then there existsδ > 0 s.t. z ≥δy and so x ≥ (a +δ)y and this contradicts
the definition of a . So there exists i such that zi = 0.

{lem:perr-frob-theor}
Lemma 7.6. If A >> 0, x > 0 and Ax ≥ c x then c ≤ρ(A) the spectral radius.

Proof. Assume c > 0. We have by induction An x ≥ c n x , therefore





An




= sup

¨




An y






∞




y






∞

, y 6= 0

«

≥
‖An x‖∞
‖x‖∞

≥ c n , (7.16)

and by Gelfand’s formula, ρ(A) = limn→+∞ ‖An‖1/n ≥ c .

Theorem 7.7. Assume A >> 0 and let ρ =ρ(A)> 0 be its spectral radius. Then

1. There exists u >> 0 such that Au =ρu.

2. If λ ∈ s p (A) and λ 6=ρ then, |λ|<ρ.

3. The dimension of the eigenspace associated to ρ is 1. More precisely, if Ax =
λx with x > 0 and λ> 0, then λ=ρ and x =αu for some α> 0.

Proof. Let x 6= 0 be an eigenvector of A with eigenvalue λ. Then y = |x | defined
by yi = |xi | satisfies

|λ|yi =

�

�

�

�

�

∑

j

ai j x j

�

�

�

�

�

≤
∑

j

ai j yj (7.17) {eq:pfeqmod}{eq:pfeqmod}

that is Ay ≥ |λ|y . By Lemma 7.6, |λ| ≤ρ.
Assume that |λ|=ρ. Then by the two preceding lemmas,ρ = sup

�

c > 0 : Ay ≥ c y
	

and there exits i such that ρyi = (Ay )i that is there is equality in (??)

ρyi =

�

�

�

�

�

∑

j

ai j x j

�

�

�

�

�

=
∑

j

ai j yj =
∑

j

ai j

�

�x j

�

� . (7.18) {eq:rho-y_i-=}{eq:rho-y_i-=}
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Recall that if w1, . . . , wn are complex numbers such that |w1+ · · ·+wn | =
∑

|wi |
then they have the same argument : there exists θ ∈R and λi ≥ 0 such that wk =
λk e iθ .
Applying this to the preceding equation (7.18) yields that the x j have the same
argument, and therefore x j = e iθ yj so x = e iθ y and thus Ay = λy . We also get
that yi > 0 since otherwise forall j yj = 0. Since ρyi = (Ay )i we get that λ = ρ.

Since y > 0 and A >> 0 we have y = 1
λAy >> 0 and this proves statements 1 and

2 of the theorem.
Let us prove now that if Ax =λx with x > 0 and λ> 0, then λ=ρ and x = a u for
some a > 0. First x > 0, A >> 0 so x = 1

λAx >> 0.
Let a = sup{c > 0 : x ≥ c u}. By Lemma 7.5, a > 0 and for some i , xi = a ui . There-
fore

λa ui =λxi = (Ax )i =
∑

j

ai j x j ≥(x≥a u ) a
∑

j

ai j u j = aρui

SInce |λ| ≤ρ, we obtainλ=ρ and that there is equality in the preceding inequal-
ity, and therefore since ai j > 0, x =αu .

{theo:perronfrobenius}
Theorem 7.8. If A ≥ 0 and there exists m ∈N∗ such that Am >> 0 then the conclu-
sions of the preceding theorem hold.

Proof. We haveρ(Am ) =ρ(A)m . Let n 6= 0 and λ such that Ax =λx . Then Am x =
λm x If |λ|=ρ then |λm |=ρ(Am ) so by the preceding theorem λm =ρ.
Observe that since Am >> 0, 0 /∈ s p (A) so every line and every column of A is > 0.
Therefore Am+1 = Am A >> 0 and we have also λm+1 = ρ. This yields λ = ρ so
Am x =ρm x and by the preceding theorem x =ηy with y >> 0, η ∈C. Therefore
Ay = y and we are done.

Assume A ≥ 0 and Am >> 0 for some integer m . We saw that A has a right eigen-
vector u >> 0 such that Au =ρu . We normalize u so that

∑

i ui = 1.
Then A has a left eigenvector with eigenvalue ρ (consider the transpose): v A =
ρv . And we can normalize v so that v u = u .v T =

∑

i vi u=1.
Prove as an exercice that the operator P x = (x .v T )u = v x u is a projector P 2 = P
that commutes with A : AP = PA =ρP . (It is a projector on the eigenspace with
eigenvalue ρ).

Lemma 7.9. Let B = A−ρP . Then ρ(B )<ρ and An

ρn → P .

Proof. Assume B x =λx with λ 6= 0, x 6= 0. Then

λP x = P B x = PAx −ρP 2 x = 0 , (7.19)

o P x = 0 and Ax = λx . If |λ| = ρ then λ = ρ and P x = x so x = 0, absurd.
Therefore |λ|<ρ and we have proved that ρ(B )<ρ.By induction

An = B n +ρn P , (7.20)
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and therefore ρ−n An = P + ρ−n B n . But if δ > 0, then there exists by Gelfand
formula a n0 such that for n ≥ n0





ρ−n B n




≤ρ−n (ρB +δ)n → 0 (7.21)

if we have chosen δ small enough. And thus ρ−n B n → 0.

Prove as an exercice that if x > 0 and Ax ≥ λx for some λ ≥ 0 then λ = ρ and so
x is a multiple of u .

Fortunately, we know exactly when to apply Theorem 7.8. A matrix A ≥ 0 is irre-
ducible if

∀x , y ∃m (Am )x y > 0 . (7.22)

The period of an element x is d (x ) = g c d {n ≥ 1 : (An )x x > 0}. If A is irreducible
then all states have the same period, forall x d (x ) = d (A). We say then that A is
aperiodic if d (A) = 1.

Proposition 7.10. Let A be a matrix such that A ≥ 0. Then there exists m ∈N∗ such
that Am >> 0 iff A is irreducible and aperiodic.

5 The supercritical case and geometric growth

We assume that the mean matrix M = (mi j ) is irreducible and aperiodic. Thanks
to Perron Frobenius theory, ifρ is the spectral radius of M then there exists u >>
0, v >> 0 with 1=

∑

i ui vi such that M u =ρu and v M =ρM .
We know then that Wn = ρ−n Zn u is a positive martingale converging to a finite
rv W .

{theo:supercriticalmulti}
Theorem 7.11. Assume ρ > 1 and supi ,k E

�

ξi k log+ξi k

�

<+∞. Then

ρ−n Zn →W v a .e . (7.23)

Corollary 7.12. Under the preceding assumptions, on the non extinction set the
assymptotic proportions of each type converge a.e. to a deterministic number. If
|Zn |=

∑

j Zn j then, a.e. on {W > 0}

Zni

|Zn |
→

vi

|v |
. (7.24)

Proof of Theorem 7.11. To simplify the proofs we shall assume that supi ,k E
�

ξ2
i k

�

<
+∞ and follow the arguments of Kesten and Stigum [11].

Lemma 7.13. There exists a constant C > 0 such that for all a ∈Rd , z ∈Rd
+

Ez

�

((Z1− z M )a )2
�

≤C ‖a‖2
2|z | . (7.25)
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Proof. Remember that E [Zn+1 | Fn ] = Zn M , hence if X = Z1a =
∑

i Z1i ai , we
have

Ez [X ] =Ex [E [Z1a | F0]] = z M a . (7.26)

Therefore,

Ez

�

((Z1− z M )a )2
�

=Varz (X ) =Var

  

∑

j

z j
∑

i=1

ξ
(1), j
i

!

a

!

=
∑

j

z j
∑

i=1

Var
�

ξ j a
�

by independence,

=
∑

j

z j Var
�

ξ j a
�

≤C ‖a‖2
2|z | .

Lemma 7.14. The series
∑

n (Zn+1−Zn M )ρ−n converges as in Rd .

Proof. We shall prove that for every a ∈Rd the series
∑

n Un converges a.e. with
Un :=ρ−n (Zn+1−Zn M )a . First observe that by induction Zn ∈ L 2 so Un ∈ L 2.
ThenE [Un | Fn ] = 0 hence Mn =U1+· · ·+Un is an L 2 martingale and it converges
a.e. as soon as

∑

n E
�

U 2
n

�

<+∞. Indeed,

E [Un | Fn ] =ρ
−n (E [Zn+1a | Fn ]−Zn M a ) = 0 . (7.27)

Moreover, by Markov property,

E
�

U 2
n | Fn

�

=ρ−2nEZn

�

((Z1−Z0M )a )2
�

≤Cρ−2n‖a‖2
2|Zn | . (7.28)

Remember that since u >> 0, Wn =ρ−n Zn =ρ−n
∑

i ui Zni ≥Cρ−n |Zn |, and thus

E [|Zn |]≤CρnE [Wn ]≤CρnE [W0] (7.29)

Hence,
E
�

U 2
n

�

=E
�

E
�

U 2
n | Fn

��

≤Cρ−2nE [|Zn |]≤C ′ρ−n (7.30)

and thus
∑

n E
�

U 2
n

�

<+∞.
{lem:supercr-det}

Lemma 7.15. Let u , v, xn ∈Rd be such that u .v = 1 and limn ,p→+∞ xn+p−(xn .u )v =
0. Then there exists λ ∈R such that xn →λv .

The proof is left as an exercise.
{lem:supercr-case-geom}

Lemma 7.16.

a .e . lim
r0→+∞,r1−r0→+∞

Zr1+1ρ
−(r1+1)−

�

ρ−r0 Zr0
u
�

v = 0 (7.31)
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Proof. From Perron Frobenius theory we know that if z P = z u v is the projection
then B = M −ρP has spetral radius s p r (B ) < ρ and thus ‖B n‖ ≤ ρn

1 for some
0<ρ1 <ρ. SInce ρ−n M n = P +ρ−n B , we have

I (r0, r1) :=
r1
∑

r=r0

�

Zr+1M r1−r −Zr M r1−r+1
�

ρ−1−r1

=
r1
∑

r=r0

(Zr+1−Zr M )ρ−(r+1)�ρr−r1 M r1−r
�

=
r1
∑

r=r0

(Zr+1−Zr M )ρ−(r+1)P +
r1
∑

r=r0

(Zr+1−Zr M )ρ−(r+1)ρr−r1 B r1−r

Therefore, with Ur = (Zr+1−Zr M )ρ−(r+1)P ,

‖I (r0, r1)‖ ≤
















r1
∑

r=r0

Ur
















+ sup
r≥r0

‖Ur ‖
r1
∑

r=r0

ρr−r1




B r1−r




, (7.32)

and limr0→+∞,r1−r0→+∞ I (r0, r1) = 0 since the first term is a remainder for a con-
vergent series

∑

r Ur , and the second term is bounded by

C sup
r≥r0

‖U ‖r . (7.33)

Now observe that I (r0, r1) is a telescopic sum:

I (r0, r1) =ρ
−(r1+1)Zr1+1−ρ−r0 Zr0

ρ−(r1−r0+1)M r1−r0+1 (7.34)

Since ρ−n M n → P this yields

0= lim
r0→+∞,r1−r0→+∞

I (r0, r1) = lim
r0→+∞,r1−r0→+∞

ρ−(r1+1)Zr1+1−ρ−r0 Zr0
P , (7.35)

and this ends our proof of the Lemma.

We now resume the proof of the Theorem. Combining Lemmas 7.15 and 7.16 we
obtain the existence of a random variable T such that a.e. ρ−n Zn → T v . Since
Wn =ρ−n Zn u→W , we have a.e. W = T v u = T .
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Exercises

1 Exercises on Galton Watson processes

Exercice 1.1

Describe precisely, extinction probability, mean time to extinction, of the Gal-
ton Watson process when the reproduction law is non deterministic and satisfies
P (ξ= 0)+P (ξ= 1) = 1.

Exercice 1.2

Prove that for a subcritical GW process( m < 1 ) the mean total progeny is

E
�

X̄
�

=
1

1−m

Exercice 1.3

Assume thatσ2 :=Var(ξ)<+∞. Show that

Var(Xn+1) =m nσ2+m 2 Var(Xn ) , (8.1) {eq:18}{eq:18}

and then that

Var(Xn ) =

¨

σ2m n (m n−1)
m 2−m if m 6= 1 .

nσ2 if m = 1.
(8.2) {eq:19}{eq:19}

Show that if m > 1 then the martingale Wn =
Xn
m n is UI.

Solution de l’Exercice 1.1

We have P (ξ= 1) = 1−P (ξ= 0) = p ∈ (0, 1). Therefore T0 = inf{n ≥ 1 : Zn = 0} is
geometric with parameter 1− p , E [T0] =

1
1−p , T0 < +∞ so there is almost sure

extinction.

51
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Solution de l’Exercice 1.3

By the conditional variance formula

Var(Xn+1) =Var(E [Xn+1 | Fn ]) +E
�

(Xn+1−E [Xn+1 | Fn ])
2
�

=m 2 Var(Xn ) +E
�

E
�

(Xn+1−m Xn )
2 | Xn

��

=m 2 Var(Xn ) +E
�

Xnσ
2
�

.

Exercice 1.4

The Galton Watson process with immigration is defined by the recurrence

Xn+1 =
Xn
∑

i=1

ξ(n+1)
i +Yn+1

where the (ξ(k )i , k ≥ 1, i ≥ 1) are IID distributed as ξ and are independent from

(Yk , k ≥ 1) IID distributed as Y . In this model ξ(n+1)
i is the number of children of

the i -th individual of the n-th generation, and Yn is the number of immigrants
in the n-th generation. We assume that 0<m =E [ξ]<+∞, ∀ jP

�

ξ= j
�

< 1 and
0<λ=E [Y ]<+∞.

1. Prove that one has
Xn = Zn +U (1)

n + · · ·+U (n )
n , (8.3) {eq:21}{eq:21}

with Zn the number of descendants at generation n of the initial individ-

ual, U (i )
n is the number of descendants at generation n of immigrants that

arrived at generation i , and all these processes are independent.

2. Let Vn =m−n Xn . Show that

E [Xn+1 | Fn ] =m Xn +λ , (8.4) {eq:22}{eq:22}

after defining preciselyFn .

3. Show that Vn is a positive submartingale.

4. Assume from now on that m > 1. Show that

E [Xn ] =
m n (m +λ−1)−λ

m −1
, (8.5) {eq:23}{eq:23}

and infer that C := supE [Vn ]<+∞.

5. Show that there exists a rv V , 0≤V <+∞ a.e. and Vn →V a.e.
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6. Recall that Wn =m−n Zn →W a.e. for a positive finite rv W . Let β = m+λ−1
m−1

and let

T =
Y
∑

k=1

Wk , (8.6) {eq:24}{eq:24}

with (Wk , k ≥ 1) IID distributed as W . Show that

m−nU (i )
n →m−i T (i )a .e . with T (i )

d=T . (8.7) {eq:25}{eq:25}

Deduce that

V ≥U :=W +
+∞
∑

i=1

m−i T (i ) a .e . (8.8) {eq:26}{eq:26}

7. Using independence in (8.3), compute for λ > 0, E
�

e −λVn
�

Combining the
inequality for a positive random variable

− logE
�

e −X
�

≤E [X ]

with the fact that

E
�

m−nU (i )
n

�

=m−nE [E [Zn−i | Z0 = Y ]] =m−n m n−iE [Y ] =λm−i , (8.9)

and show that

E
�

e −λV
�

= lim
n→+∞

E
�

e −λVn
�

=E
�

e −λU
�

, (8.10)

and deduce from it that V =U a.e.

8. Show that if E
�

ξ log+ξ
�

< +∞ the V > 0 a.e. and that if E
�

ξ log+ξ
�

= +∞
then V = 0 a.e.

Exercice 1.5

Assume that (X i )i≥1 are IID positive random variables such that for constants
C > 0, a > 0

P (X > x )∼C e −a x (x →+∞) . (8.11)

Let Mn = sup1≤k≤n Xk . Show that Mn − 1
a log n converges in distribution.

Why is it a first step in the proof of (1.13) ?
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2 Exercises on birth and death processes

Exercice 2.1

Let φ be a non identically null non negative solution of Qφ = φ, with φ(0) = 0.
Let∆n =φn −φn−1, fn =

1
λn

, gn =
µn
λn

.

1. Show that∆1 =φ1,∆n+1 =∆n gn + fnφn .

2. Show thatφn is increasing

3. Let rn = fn +
∑n−1

k=1 fk gk+1 . . . gn + g1 . . . gn . Show that

rnφ1 ≤∆n+1 ≤ rnφn

and deduce that

φ1(1+ r1+ · · ·+ rn )≤φn+1 ≤φ1

n
∏

k=1

(1+ rk )

4. Show that
∑

k rk converges iff φ is bounded (and relate this to the non ex-
plosion criterion).

Exercice 2.2

Consider a linear birth and death process with λ = µ. Let q (t ) := P1(X t = 0) be
the extinction probability at time t , when starting with one individual. Explain
why Px (X t = 0) = q (t )x . Condition by the first jump time and show that

q (t ) =

∫ t

0

e −2λs (λq (t − s )2+λ) . (8.12)

Deduce that q (t ) satisfies the ode (Ricatti)

d

d t
q =λ(q −1)2 , (8.13)

and establish the formula q (t ) = λt
1+λt .

Exercice 2.3

Consider a linear birth and death process. Apply Kolmogorov forward equation
to f (x ) = x 2 to show that u (t ) = Pt f (x ) satisfies the ode

u ′ = 2(λ−µ)u + v , (8.14)

with v (t ) =Ex [X t ] = x e (λ−µ)t . Deduce from it that with Wt = e −(λ−µ)t X t we have
if λ>µ, supt E

�

W 2
t

�

<+∞, and thus the martingale W is UI.
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Solution de l’Exercice 2.3

if f (x ) = x 2 then

L f (x ) =λx ((x +1)2− x 2) +µx ((x −1)2− x 2) = 2(λ−µ)x 2+ (λ+µ)x (8.15)

so if u (t ) = Pt f (x ), taking into accoutn Ex [X t ] = x e (λ−µ)t

u ′(t ) = Pt L f (x ) = 2(λ−µ)u (t ) + (λ+µ)x e (λ−µ)t (8.16)

and since u (0) = x 2, if λ 6=µ

u (t ) = e 2(λ−µ)t
�

x 2+ (λ+µ)x
1− e −(λ−µ)t

λ−µ

�

(8.17)

Therefore, if λ>µ, supt E
�

W 2
t

�

<+∞.

3 Exercises on stochastic comparison of Markov
Processes

Exercice 3.1

Show that if X is a branching process on N2, then it is monotone.

Solution de l’Exercice 3.1

It is the same proof as in dimension 1 with the partial order x ≤ y if x1 ≤ y1 and
x2 ≤ y2. Then if x ≤ y , there exists z ∈N×N such that y = x + z and we have, for
a monotone f :

Pt f (y ) =Ey

�

f (X (t ))
�

=Ex ,z

�

f (X x (t ) +X z (t ))
�

(8.18)

≥Ex ,z

�

f (X x (t ))
�

=Ex

�

f (X (t ))
�

= Pt f (x ) (8.19)

Exercice 3.2

Let X be a pure jump process onN2 with semigroup (Pt )t≥0 and generator L . For
every θ = (θ1,θ2) ∈ (0,+∞)2 we define the function fθ (x ) = e −θ .x = e −(θ1 x1+θ2 x2).
Then the following assertions are equivalent

1. X has the branching property

2. for every θ and every x , Pt fθ (x + y ) = Pt fθ (x )Pt fθ (y ).

3. for every θ and every x ,

L fθ (x + y ) = fθ (x )L fθ (y ) + fθ (y )L fθ (x ) (8.20)
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4. for every θ , there exists a constant vector Cθ such that

L fθ (x ) =Cθ .x fθ (x ) (8.21)

Solution de l’Exercice 3.2

In the lecture notes we saw 1 ⇐⇒ 2.
For 2 =⇒ 3 we only have to take derivatives at time t = 0
For 3 =⇒ 4 it is trivial : let γ(x ) = L f (x )/ f (x ) it satisfies γ(x + y ) = γ(x ) +γ(y ).
Eventually, 4 =⇒ 1 comes from the method of characteristics. Let C1(θ ), C2(θ )
denote the components of Cθ . Letφt be the flow of the ODE

θ ′1 =+C1(θ1,θ2) (8.22)

θ ′2 =+C2(θ1,θ2) (8.23)

Then, by Kolmogorov’s equation the function u : t → Pt fφt (θ )(x ) is constant: in-
deed let v (t ,θ1,θ2) = Pt fθ (x )

u ′(t ) = ∂t v (t ,φt (θ ))+θ
′
1∂θ1

v (t ,φt (θ ))+θ
′
2∂θ2

v (t ,φt (θ ))

= ∂t Pt fη(x )−Pt L fη(x ) for η=φt (θ )

= 0

so Pt fφt (θ )(x ) = u (0) = fθ (x ) and thus

Pt fθ (x ) = fφ−t (θ )(x ) = e φ−t (θ ).x . (8.24)

This is true at least for t in (0,δ), since on (−δ,δ) the flow exists by Cauchy Lips-
chitz theory. Therefore, by semi group property, this is true for all t .

Exercice 3.3

(see [12]) Let {N (t ) = (N1(t ), N2(t ))} be aN×N-valued pure jump Markov process
with the following transition rates.

m b1 from (m , n ) to (m +1, n )
n b2 from (m , n ) to (m , n +1)

md1(m , n ) from (m , n ) to (m −1, n )
nd2(m , n ) from (m , n ) to (m , n −1).

Here b1, b2 are positive constants and d1, d2 are functions fromN×N toR+. Sup-
pose that there is a set S ⊂ R+ ×R+ and constants d+1 , d−1 , d+2 , d−2 ∈ [0,∞] such
that

d−1 ≤ inf d1(S )≤ sup d1(S )≤ d+1 and

d−2 ≤ inf d2(S )≤ sup d2(S )≤ d+2
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Assume that (N1(0), N2(0)) ∈S and let TS be the random time defined by

TS = inf{t ≥ 0 : N (t ) /∈S }.

Let z+1 , z−1 , z+2 , z−1 be positive integers satisfying z−1 ≤N1(0)≤ z+1 and z−2 ≤N2(0)≤
z+2 . Then on the same probability space as N , we can construct four N-valued
processes B+1 , B−1 , B+2 and B−2 with laws P(b1, d−1 , z+1 ), P(b1, d+1 , z−1 ), P(b2, d−2 , z+2 ),
P(b2, d+2 , z−1 ) such for all t ≤ TS the following relations are satisfied almost surely,

B−1 (t )≤N1(t )≤ B+1 (t ) and B−2 (t )≤N2(t )≤ B+2 (t ).

(Hint : prove that when the function sd1, d2 are constant we have a branching
process, which is therefore monotone, and use the comparison theorems)

Solution de l’Exercice 3.3

The generator is

L f (x ) =
∑

i

xi (bi ( f (x + ei )− f (x ))+di (x )( f (x − ei )− f (x ))) (8.25)

Therefore L fθ (x ) = fθ (x )
∑

i xi (bi (e θi − 1) + di (x )(e −θi − 1)) and the process is
branching when the death rates are constant.
Therefore, to prove that we can produce the coupling on [0, TS (B−))we only have
to prove that for every monotone set A ⊂S

L−1A(x )≤ L1A(x )≤ L+1A(x ) (x ∈S ) . (8.26)

SInce the monotone sets are of the type A = [a ,+∞)× [b ,+∞) this is fairly easy
to prove.

4 Exercises on Multitype branching processes

Exercice 4.1

Let u , v, xn ∈ Rd be such that u .v = 1 and limn ,p→+∞ xn+p − (xn .u )v = 0. Then
there exists λ ∈R such that xn →λv .

Solution de l’Exercice 4.1

Let λn := xn .u . Given ε > 0, there exists n0, p0 such that forall n ≥ n0, p ≥ p0,




xn+p −λn v




≤ ε.
Therefore, since u .v = 1, for n ≥ n0, p ≥ p0

�

�λn+p −λn

�

�=
�

�xn+p .u −λn v.u
�

�≤ ‖u‖∞




xn+p −λn v




≤C ε . (8.27)
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Hence, for n ≥ n0, p ≥ p0

λn −C ε≤λn+p ≤λn +C ε. (8.28)

Letting p →+∞, we obtain with a = lim infλk and b = lim supk λk ,

λn −C ε≤ a ≤ b ≤λn +C ε. (8.29)

Taking n → +∞ in λn ≤ a +C ε yields b ≤ a +C ε. Letting ε→ 0 yileds b = a so
there exists λ ∈ R such that λn → λ. Let ε, n0, p0 be as above. Then, for n ≥ n0

and p ≥ p0





xn+p −λv




≤




xn+p −λn v




+ |λ−λn |‖v ‖ ≤ ε+ |λ−λn |‖v ‖ . (8.30)

Letting n→+∞ yields
lim sup

k
‖xk −λv ‖ ≤ ε . (8.31)

Then, letting ε→ 0 yields xk →λv .

Exercice 4.2

Consider the bacteria example of the lecture notes. Determine the growth rate of
the population when there is no extinction, and show that there is an asymptotic
proportion of type A cells. Take α1 = 0.9998, p1 = 0.8, α2 = 0.999, p2 = 0.9.

Solution de l’Exercice 4.2

The mean matrix is M >> 0

M =

�

p1(1+α1) p1(1−α1)
p2(1−α2) p2(1+α2)

�

(8.32)

with d e t (M ) = 2p1p2α1α2 > 0 and t r (M ) > 0. We can apply Perron Frobenius
theorem, and the important thing is to find a left eigenvector. Numerically, we
get ρ = 1.79910717 and a left eigenvector, normalized, with v M = ρM is v =
[0.00446413, 0.99553587]. Therefore the asymptotic proportion of type A cells is
v [0] = 4.410−3 very small.

5 Hints and Solutions
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